• Title/Summary/Keyword: 탄화수소 저류층

Search Result 27, Processing Time 0.027 seconds

An Analysis on Applicability of Geophysical Exploration Methods to Monitoring Polymer-flooding (물리탐사 기법들의 화학공법 모니터링 적용성 분석)

  • Cheon, Seiwook;Park, Chanho;Ku, Bonjin;Nam, Myung Jin;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.143-153
    • /
    • 2015
  • Polymer flooding for enhancing hydrocarbon production injects into a reservoir polymer solution that is viscous. It is very important to monitor the behavior pattern of the polymer solution in order to evaluate the effectiveness of polymer flooding. To monitor the distribution of polymer solution and thus fluid substitution within the reservoir, we first construct seismic and resistivity rock physics models (RPMs), which are functions of reservoir parameters such as rocks and type of fluid, fluid saturation. For the seismic and resistivity RPMs, responses of seismic and electromagnetic (EM) tomography are numerically simulated as polymer injection, using two dimensional (2D) staggered-grid finite difference elastic modeling and 2.5D finite element EM modeling algorithms, respectively. In constructing RPM for EM tomography, three different reservoir rocks are considered: clean-sand, dispersed shale-sand, and sand-shale lamination rocks. The polymer solution is assumed to have 2 wt% of polymer as normally generated, while water is freshwater or saltwater. Further, neutron logging is also considered to check its sensitivity to polymer flooding. The techniques discussed in the paper are important in monitoring not only hydrocarbon but also geothermal reservoirs.

Occurrence of Pyrobitumen in the Lower Cretaceous Jinju Formation, Korea (하부 백악기 진주층에서 산출되는 고열역청(pyrobitumen)의 산상)

  • Choi, Taejin;Lim, Hyoun Soo;Lee, Jae Il;Lee, Yong Il
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.639-646
    • /
    • 2022
  • Occurrence of black opaque hydrocarbon (pyrobitumen) in some Cretaceous Jinju sandstones of the Sindong Group, Gyeongsang Basin in Korea is first reported in this study. The pyrobitumen is developed on chlorite pore-lining cement, or impregnated into the outer zone of chlorite cement. Therefore, it seems to have been formed after the precipitation of chlorite cement, indicating the former presence of crude oil. The liquid hydrocarbons migrated into sandstones during moderate burial and these sandstones seem to have acted as a liquid hydrocarbon reservoir. The presence of pyrobitumen in the Jinju Formation indicates that this formation underwent deep burial after liquid hydrocarbon migration. As reservoir temperatures increased further, hydrocarbons were cracked and a solid pyrobitumen residue remained in the reservoir.

Geochemical Evaluation and Characterization of the Shale Gas Resources (셰일 가스 자원의 지화학적 평가 및 특성화)

  • Lee, Young-Joo
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.359-373
    • /
    • 2013
  • Shale is considered as a source rock for conventional oil and gas exploration and development because shale is fine-grained detrital sedimentary rock which can preserve the organic matter better. Shale has a good sealing capacity for the petroleum trap due to its low permeability. Commercial recoveries of gas from shale in the North America based on the development of technologies of horizontal drilling and hydraulic fracturing reveal that shale also function as a effective reservoir rock. Geochemical techniques to evaluate generation potential of the hydrocarbons from organic matter in the source rocks can be applied for the exploration of the shale gas resources. To evaluate shale gas resources, it is important to understand various geochemical processes and shale characteristics controlling generation, storage and estimation of shale gas reserves. In this paper, the generation mechanism of the oil and gas from organic matter is reviewed, and geochemical techniques which can be applied for the evaluation and characterization of shale gas are introduced.

Understanding, Exploration, and Development of Tight Gas Reservoirs (치밀가스 저류층의 이해와 탐사개발)

  • Son, Byeong-Kook
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.36-44
    • /
    • 2008
  • Natural gas in tight reservoirs, one of unconventional hydrocarbon resources, has become a significant exploration and exploitation targets. Tight gas reservoirs are the gas-bearing rocks that commonly have a permeability of less than 0.1 millidarcy (mD). Tight gas reservoirs are characterized by extensive and deep locations as well as abnormal pressure such as over- or under-pressure. The tight gas reservoirs are independent of structural or stratigraphic traps, whereas conventional gases normally occur at these traps. Tight gas reservoirs can be productive when stimulated by hydraulic fracturing. Better production areas within the tight reservoir beds are referred to as sweet spots that are commonly caused by natural fractures, which should be understood and identified to enhance the recovery of the gas from tight reservoirs. The exploration and production techniques allow the commercial production of tight gas, one of environmentally friendly resources. Slant and horizontal wells have best production when they intersect the fractures. Gas production from the tight reservoirs has rapidly grown in U.S. and Canada. Indeed, the U.S. gas production of tight sandstones increases from 11.1% in 1990 to 24.1% in 2005. The presence of tight gas reservoirs has been suggested on the Korean offshore block 6-1. Paradigm shift from conventional to unconventional tight reservoir is required to develop the tight gas from the block.

  • PDF

Study on Stratigraphy, Structural Geology and Hydrocarbon Potentials of the Cretaceous Strata, Northeastern Iraq (이라크 북동부 지역 백악기 퇴적층의 층서, 구조지질 및 탄화수소 부존 유망성 연구)

  • Lee, Taecheol;Han, Seungwoo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.381-393
    • /
    • 2014
  • Seismic reflection data are integrated with fieldwork data in order to understand startigraphy, structural geology and hydrocarbon potentials of Cretaceous strata in the Mesopotamian basin, Northeastern Iraq. Cretaceous strata in the basin divided into the Qamchuqa, Kometan, Bekhme and Shiranish formations, which are composed of carbonates deposited in shallow marine environment. The geological structures in these formations are mainly recognized as thrusts, detachment folds, fault propagation folds and fault bend folds. As well, NW-SE trending fractures are regularly developed, and are horizontal or perpendicular to the structures. The distribution and frequency of fractures are related to the development of the thrusts. In terms of hydrocarbon potentials, Cretaceous strata in the basin have limited capacities for source rocks and seal rocks due to the lack of organic carbon content and the well-developed fractures, respectively. Although these carbonates have limited primary porosity, however, development of the secondary porosity derived from the fractures contributes to enhance the reservoir quality. Most important factor for the reservoir quality of Cretaceous strata seems to be the frequency and connectivity of fractures relative to locations of folds and faults. The results delineated in this study will use as reference for recognizing stratigraphy and structures of Cretaceous strata and will provide useful information on hydrocarbon potentials of Cretaceous strata in the Mesopotamian basin, NE Iraq.

Geochemical Characteristics of the Hydrocarbons from the Block 6-1, Ulleung Basin (울릉 분지 6-1 광구에서 발견된 탄화수소의 지화학적 특성)

  • Lee, Young-Joo;Cheong, Tae-Jin;Oh, Jae-Ho;Park, Se-Jin;Yi, Song-Suk
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.1-8
    • /
    • 2005
  • Seventeen exploratory wells have been drilled in the Block VI-1 of offshore Korea, which is located in the southern part or the Ulleung Basin. Gas show has been recognized from most of the wells, and gas and condensate have been accompanied in some wells. Commercial discovery of gas, accompanied by condensate, has been made from Gorae V well. The reservoir gases or the Dolgorae III, Gorae I, and Gorae V wells in the Ulleung Basin mainly consists of hydrocarbon gases (>93%). These gases are thermogenic wet gases which contain more than 96% of the methane and result from the cracking of petroleum or kerogen. Based on the chemistry and composition of the gases and stable isotope data, they seem to be generated from different source rocks. The condensates from the Gorae I and V wells are mostly generated from terrestrial organic matter. Lacustrine organic matter may not play an important role for the generation of these condensates. The condensates from the Gorae V wells consist predominantly of terrestrial organic matter but with minor subsidiary input from marine organic matter. The condensates from Gorse I and V wells may be generated from different source rocks. The thermal maturity level of the condensates from the Gorae V well ranges from early to middle oil generation zone and condensate from Gorae I reaches middle oil window. Correlation or the thermal maturation level of the condensates and organic matter in the sediments reveals that a depth of the generation of liquid hydrocarbons can be inferred to 3,000 m and 3,900 m for the Gorae V and I wells, respectively. Gorae V well, however, did not reach the target depth and the geochemical data of the Gorae I well were obscured due to the severe sediment caving in.

  • PDF

Induced Seismicity and Its Applications (유발지진 관측과 활용)

  • Kang, Tae-Seob;Rhie, Junkee;Choi, Nam-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Induced seismicity has been observed in the relation with lots of anthropogenic influence and at variety of geological conditions over the last several decades. This paper reviews those induced earthquakes and compares with each other as well as with natural tectonic earthquakes. Hydraulic fracturing is commonly used to enhance the permeability through new cracks in the rock formation. The process triggers the induced seismicity, which can give crucial information on the fracture network and oil/gas migration. In the similar way, unintentionally induced events during the production procedure of the field, dam reservoir, minig activity, or wastewater injection can be used to give insight into various hydrodynamic processes and changes of reservoir properties at a various scales. The general conclusion summarizes the uncertainty or limitations of knowledge up to date and presents some issues to be dealt with in the future research.

오일샌드 저류층 지질특성화를 위한 기초연구 소개

  • Choe, Jae-Yong;Kim, Dae-Seok;Gwon, Lee-Gyun;Jeong, Gong-Su
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.106-106
    • /
    • 2010
  • 오일샌드는 비투멘(bitumen), 물, 점토, 모래의 혼합체로 이루어진 비재래형 탄화수소 자원으로 세계적인 고유가 시대에 큰 관심을 받고 있는 석유자원 중 하나이다. 오일샌드는 대부분이 캐나다 앨버타주에 분포하고 있으며 주요 저류층으로는 아스바스카(Athabasca), 콜드레이크(Cold Lake) 지역의 멕머레이층(McMurray Formation), 클리어워터층(Clearwater Formation), 그랜드래피드층(Grand Rapid Formation)과 피스리버(Peace River) 지역의 블루스카이층(Bluesky Formation), 게팅층(Gathing Formation)이 있다. 오일샌드 저류층은 고생대 탄산염 기반암 위에 하성-에스츄어리에 이르는 다양한 퇴적환경에서 형성되어 매우 복잡한 지질특성이 나타난다. 오일샌드 저류층의 효율적인 개발을 위해서는 저류층의 복잡한 지질학적 특성의 이해가 반드시 필요하다. 본 연구에서 캐나다 오일샌드 시추코어 분석 DB, 물리검층 자료, 현장 및 현생 시추코어를 통하여 오일샌드 저류층의 지질특성화 정보의 도출을 시도하였다. 우선 캐나다 앨버타 전역에 분포하는 시추공의 기본 정보(표고, 위경도, 층서별 최상부 심도, 생산광구명, 광구개발업체)를 제공하는 AccuMap DB 프로그램을 이용하여 광역적인 오일샌드 저류층의 분포 특성을 이해하고자 주요층서에 대한 고지형도 및 층후도를 생산광구별로 도면화하여 분석하였다. 또한 캐나다 ENCANA사와 국제공동연구의 일환으로 확보된 크리스티나 레이크(Christina Lake)광구의 현장 시추코어를 이용하여 코어의 상세기재, 비파괴 물성측정, 입도/비투멘 함유량 분석과 같은 다양한 실내 시추코어분석 실험을 수행 중이다. 비파괴 물성측정은 현장 시추코어의 물리적/화학적 특성을 파악하고자 MSCL(Multi sensor core logger)과 XRF 코어 스캐너(X-ray fluorescence core scaner)를 통해 이루어지며, 분석결과로 시추코어의 감마밀도(gamma density), P파 속도(P-wave velocity), 전기비저항(resistivity), 대자율(magnetic susceptibility) 및 색지수의 물성과 정량적 화학조성을 측정한다. 현장 시추코어의 일부는 유기용매를 이용하여 퇴적물 내의 비투멘을 완전히 추출하고 퇴적물 입도와 저류층 비투멘 함유량 측정에 이용되었다. 현장 시료 분석 결과들은 물리검층 자료와 대비를 통하여 저류층의 지질특성을 규명하는 연구에 이용될 예정이다. 마지막으로 오일샌드의 현생 유사 퇴적환경으로 알려진 서해 경기만 조간대에서 시추코어 퇴적물을 획득하여 상세 기재하였으며, 이를 통해 오일샌드 저류층의 퇴적 모델을 제시하고자 퇴적층서 연구를 진행 중이다. 향후 오일샌드 관련 시추코어의 분석 결과들이 종합되면 기존 보다 비투멘 회수효율을 향상시킬 수 있는 정밀한 오일샌드 저류층 지질모델을 수립할 수 있을 것으로 기대된다.

  • PDF

Geological Characteristics of Extra Heavy Oil Reservoirs in Venezuela (베네주엘라 초중질유 저류층 지질 특성)

  • Kim, Dae-Suk;Kwon, Yi-Kyun;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.83-94
    • /
    • 2011
  • Extra heavy oil reservoirs are distributed over the world but most of them is deposited in the northern part of the Orinoco River in Venezuela, in the area of 5,500 $km^2$, This region, which has been commonly called "the Orinoco Oil Belt", contains estimated 1.3 trillion barrels of original oil-in-place and 250 billion barrels of established reserves. The Venezuela extra heavy oil has an API gravity of less than 10 degree and in situ viscosity of 5,000 cP at reservoir condition. Although the presence of extra heavy oil in the Orinoco Oil Belt has been initially reported in the 1930's, the commercial development using in situ cold production started in the 1990's. The Orinoco heavy oil deposits are clustered into 4 development areas, Boyaco, Junin, Ayachoco, and Carabobo respectively, and they are subdivided into totally 31 production blocks. Nowadays, PDVSA (Petr$\'{o}$leos de Venzuela, S.A.) makes a development of each production block with the international oil companies from more than 20 countries forming a international joint-venture company. The Eastern Venezuela Basin, the Orinoco Oil Belt is included in, is one of the major oil-bearing sedimentary basins in Venezuela and is first formed as a passive margin basin by the Jurassic tectonic plate motion. The major source rock of heavy oil is the late Cretaceous calcareous shale in the central Eastern Venezuela Basin. Hydrocarbon materials migrated an average of 150 km up dip to the southern margin of the basin. During the migration, lighter fractions in the hydrocarbon were removed by biodegradation and the oil changed into heavy and/or extra heavy oil. Miocene Oficina Formation, the main extra heavy oil reservoir, is the unconsolidated sand and shale alternation formed in fluvial-estuarine environment and also has irregularly a large number of the Cenozoic faults induced by basin subsidence and tectonics. Because Oficina Formation has not only complex lithology distribution but also irregular geology structure, geological evolution and characteristics of the reservoirs have to be determined for economical production well design and effective oil recovery. This study introduces geological formation and evolution of the Venezuela extra heavy oil reservoirs and suggest their significant geological characteristics which are (1) thickness and geometry of reservoir pay sands, (2) continuity and thickness of mud beds, (3) geometry of faults, (4) depth and geothermal character of reservoir, (5) in-situ stress field of reservoir, and (6) chemical composition of extra heavy oil. Newly developed exploration techniques, such as 3-D seismic survey and LWD (logging while drilling), can be expected as powerful methods to recognize the geological reservoir characteristics in the Orinoco Oil Belt.