• Title/Summary/Keyword: 탄화수소 열분해

Search Result 73, Processing Time 0.027 seconds

Study of Pyrolysis Behavior of Alberta Oil Sand by Continuous Operation of Fluidized-Bed Reactor (Alberta 오일샌드의 유동층 열분해 연속실험을 통한 열분해 특성 파악)

  • Shin, Jong-Seon;Sun, Yang Kuk;Park, Young Cheol;Bae, Dal-Hee;Jo, Sung-Ho;Shun, Dowon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.68-74
    • /
    • 2010
  • In this study, fluidized-bed pyrolysis has been conducted in order to recover the bitumen contained in the oil sand. Canada Alberta oil sand contains 11.9% of bitumen and the bitumen-derived heavy oil produced in fluidizedbed tends to be upgraded relative to the bitumen. The continuous operation has been performed using $N_2$ as a fluidization gas at 1 atm and $500^{\circ}C$ in a reactor of 170 cm height. The results showed 87.76% of bitumen conversion, where liquid products are 74.45% and gas products are 13.31%. $H_2$, $O_2$, CO, $CO_2$, $CH_4$, and NO and $C_1{\sim}C_4$ hydrocarbons in the gas products were analyzed by on-line gas analyzer and gas chromatography, respectively. The pyrolysis oil was analyzed by using proximate analysis, heavy metal analysis, SIMDIS, asphaltenes, and heating value. By SIMDIS analysis, naphtha was 11.50%, middle distillation was 44.83% and heavy oil was 43.66%. It was obvious that the pyrolysis oil was upgraded compared with bitumens.

Effect of Aluminium Addition to MCM-41 on Catalytic Cracking of an LDPE-LLDPE-EVA Copolymer Mixture (MCM-41을 이용한 LDPE-LLDPE-EVA 공중합체 혼합물의 접촉 열분해 반응에 미치는 Aluminium 첨가 효과)

  • Kim, Min Ji;Jeon, Jong-Ki;Park, Young-Kwon;Ko, Young Soo;Sohn, Jung Min
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.117-123
    • /
    • 2007
  • The effect of aluminium addition to MCM-41 on product yield and carbon number distribution was investigated in the catalytic cracking of a polymer mixture, LDPE, LLDPE, and EVA copolymer, with a composition similar to that found in real agricultural film wastes. Al-MCM-41 catalyst synthesized by post-synthetic grafting method (Al-MCM-41-P) as well as Al-MCM-41 catalyst synthesized by direct sol-gel (Al-MCM-41-D). The catalytic cracking of polymer mixture was carried out in vapor phase contact as well as in liquid phase contact. The amount of acid sites increased with aluminium addition by post method as well as direct method, which was seemed to be due to Lewis acid sites. In liquid phase catalytic cracking, the yield of light hydrocarbon fraction increased with aluminium addition. The effect of aluminium addition on production of $C_5-C_{12}$ hydrocarbons over Al-MCM-41-P catalysts was greater than that over Al-MCM-41-D catalysts. In the case of vapor phase catalytic cracking, the effect of aluminium addition was smaller than that of liquid phase catalytic cracking. The selectivity to $C_{13}-C_{32}$ hydrocarbons was smaller in vapor phase catalytic cracking.

Multilayer coating of PyC and SiC on $ZrO_2$ spheres by the CVD Process (화학증착법에 의한 구상 $ZrO_2$ 에 열분해탄소와 탄화규소의 다층 코팅)

  • 박지연;김정일;김원주;류우석;이영우;장종화
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.119-119
    • /
    • 2003
  • 탄화규소나 열분해 탄소는 고온 특성 및 화학적인 안정성 이 우수하여 단미 혹은 코팅재로로 소재의 성능을 향상시키기 위하여 에너지 관련 분야, 반도체 치구 분야, 방위산업 및 항공우주 분야와 원자력 분야에서 다양하게 사용된다. 특히 원자력 분야에서는 고온형 원자로의 노심 요소 부품으로 적용 및 개발을 고려하고 있으며, 대표적인 예로 수소생산용 초고온 가스냉각로의 코팅 핵연료 입자를 들 수 있다. 일반적으로 TRISO라 불리는 가스냉각로 핵연료는 구형 $UO_2$ kemel의 주변을 PyC-SiC -PyC의 삼중 코팅층으로 둘러싸는 구조를 하고 있으며, 이 코팅층들은 kernel물질이 분열하는 동안 발생되는 내부 기체 압력을 견디는 압력용기 역할과 기체나 금속 핵분열 생성물들을 가두는 확산 장벽 역할을 하게 된다. 본 연구에서는 구형의 $UO_2$대신 선행연구를 위하여 구형 ZrO$_2$를 이용하여 증착온도나 시간 및 입력기체비 등의 화학증착 변수로 조절하여 SiC 및 PyC을 코팅하고, 각 변수들에 의한 증착층의 거동을 고찰하고자 하였다.

  • PDF

Thermal Degradation Characteristics of Carbon Tetrachloride in Excess Hydrogen Atmosphere (과잉수소 반응조건하에서 사염화탄소의 고온 분해반응 특성 연구)

  • Won, Yang-Soo;Jun, Kwan-Soo;Choi, Seong-Pil
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.569-577
    • /
    • 1996
  • pure compound chloromethanes; methyl chloride, methylene chloride, chloroform and The carbon tetrachloride were used as a model of chlorocarbon system with Cl/H ratio to investigate thermal stability and hydrodechlorination process of carbon tetrachloride under excess hydrogen atmosphere. The parent thermal stability on basis of temperature required for 99% destruction at 1 second no was evaluated as $875^{\circ}C$ for $CH_3Cl$, $780^{\circ}C$ for $CH_2Cl_2$, $675^{\circ}C$ for $CHCl_3$ and $635^{\circ}C$ for $CCl_4$. Chloroform was thermally less stable than $CCl_4$ at fairly low temperatures $(<570^{\circ}C).$ The lion of $CCl_4$ became more sensitive to increasing temperature, and $CCl_4$ was degraded CHCl3 at above $570^{\circ}C.$ The number and quantity of chlorinated products decreases with increasing temperature for the Product distribution of $CCl_4$ decomposition reaction system. Formation of non-chlorinated hydrocarbons such as $CH_4$, $C_2H_4$ and C_2H_6$ increased as the temperature rise and particularly small amount of methyl chloride was observed above $850^{\circ}C$ in $CC1_4$/$H_2$ reaction system. The less chlorinated products are more stable, with methyl chloride the most stable chlorocarbon in this reaction system.

  • PDF

Numerical Study on Thermochemical Conversion of Non-Condensable Pyrolysis Gas of PP and PE Using 0D Reaction Model (0D 반응 모델을 활용한 PP와 PE의 비응축성 열분해 기체의 열화학적 전환에 대한 수치해석 연구)

  • Eunji Lee;Won Yang;Uendo Lee;Youngjae Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.37-46
    • /
    • 2024
  • Environmental problems caused by plastic waste have been continuously growing around the world, and plastic waste is increasing even faster after COVID-19. In particular, PP and PE account for more than half of all plastic production, and the amount of waste from these two materials is at a serious level. As a result, researchers are searching for an alternative method to plastic recycling, and plastic pyrolysis is one such alternative. In this paper, a numerical study was conducted on the pyrolysis behavior of non-condensable gas to predict the chemical reaction behavior of the pyrolysis gas. Based on gas products estimated from preceding literature, the behavior of non-condensable gas was analyzed according to temperature and residence time. Numerical analysis showed that as the temperature and residence time increased, the production of H2 and heavy hydrocarbons increased through the conversion of the non-condensable gas, and at the same time, the CH4 and C6H6 species decreased by participating in the reaction. In addition, analysis of the production rate showed that the decomposition reaction of C2H4 was the dominant reaction for H2 generation. Also, it was found that more H2 was produced by PE with higher C2H4 contents. As a future work, an experiment is needed to confirm how to increase the conversion rate of H2 and carbon in plastics through the various operating conditions derived from this study's numerical analysis results.

Effect Evaluation of Benzo[a]pyrene on Multiple Biomarkers in Common Carp (Cyprinus carpio) (잉어 (Cyprinus carpio)의 다중바이오마커를 이용한 Benzo[a]pyrene의 영향평가)

  • Kim, Woo-Keun;Kim, Ja-Hyun;Yeom, Dong-Hyuk;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • 수백여 종의 개별물질이 불완전 연소 혹은 유기물의 열분해로 인해 발생되는 다환방향족 탄화수소(PAHs)는 환경에서 중요한 오염원이 되고 있다. 본 연구는 다양한 바이오마커를 이용하여 수서생태계에 벤조피렌(benzo[a]pyrene)과 같은 다환방향족 탄화수소의 영향을 분석하였고, 이에 대한 통합적 결과 모델을 도출하였다. 즉, 잉어(Cyprinus carpio)를 이용하여 여러 농도의 벤조피렌(3, 12, $34{\mu}g/L$, 측정농도 기준)에 10일간 노출시킨 다음, DNA single-strand break, ethoxyresorufin-O-deethylase (EROD), acetylcholine esterase (AChE)와 vitellogenin (VTG)의 농도를 측정하였다. 벤조피렌은 잉어의 DNA 손상을 유도하였고, 낮은 농도에서 EROD와 VTC의 유의적인 활성을 보였으나, 신경전달물질과 관련이 깊은 AChE 효소활성에는 영향을 미치지 않았다. 이 결과를 star plot를 이용하여 통합 및 분석하였으며, 노출농도에 따른 통합 반응지수(integrated biomarker response value: IBR)로 나타내었다. 이런 다양한 바이오마커의 결과들은 벤조피렌에 대한 어류의 영향과 수생태 모니터링 자료로 이용 가능할 것으로 여겨지며, 통합반응지수는 생태위해성평가에서 유용한 도구로 쓰일 가치가 있는 것으로 평가된다.

A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand (Mn/sand 촉매를 활용한 폴리프로필렌 촉매 열분해 연구)

  • Soo Hyun Kim;Seung Hun Baek;Roosse Lee;Sang Jun Park;Jung Min Sohn
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • This study was conducted to obtain basic process simulation data before conducting pyrolysis experiments for the development of a thermochemical conversion system by recirculation of heat carrier and gases thereby. In this study, polypropylene (PP) was used as a pyrolysis sample material as an alternative to waste plastics, and fluid sand was used as a heat transfer medium in the system. Manganese (Mn) was chosen as the catalyst for the pyrolysis experiment, and the catalyst pyrolysis was performed by impregnating it in the sand. The basic properties of PP were analyzed using a thermogravimetric analyzer (TGA), and liquid oil was generated through catalytic pyrolysis under a nitrogen atmosphere at 600℃. The carbon number distribution of the generated liquid oil was confirmed by GC/MS analysis. In this study, the effects of the presence and the amount of Mn loading on the yield of liquid oil and the distribution of hydrocarbons in the oil were investigated. When Mn/sand was used, the residue decreased and the oil yield increased compared to pyrolysis using sand alone. In addition, as the Mn loading increased, the ratio of C6~C9 range gasoline in the liquid oil gradually increased, and the distribution of diesel and heavy oil with more carbon atoms than C10 in the oil decreased. In conclusion, it was found that using Mn as a catalyst and changing the amount of Mn could increase the yield of liquid oil and increase the gasoline ratio in the product.

Detonation Wave Simulation of Thermally Cracked JP-7 Fuel/Oxygen Mixture using Induction Parameter Modeling (Induction Parameter Modeling을 이용한 열 분해된 JP-7 연료 /산소 혼합기의 데토네이션 파 해석)

  • Cho, Deok-Rae;Shin, Jae-Ryul;Choi, Jeong-Yeol;Yang, Vigor
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • The detonation wave characteristics of JP-7 and oxygen mixture is investigated by one-step induction parameter model (IPM) obtained from a detailed chemistry mechanism. A general procedure of obtaining reliable one-step kinetics IPM for hydrocarbon mixture from the fully detailed chemistry is described in this study. The IPM is obtained by the reconstruction of the induction time database obtained from a detailed kinetics library. The IPM was confirmed by the comparison of the induction time calculations with that from detailed kinetics. The IPM is later implemented to a fluid dynamics code and applied for the numerical simulation of detonation wave propagation. The numerical results show the detailed characteristics of the detonation wave propagation in JP-7 and oxygen mixture at affordable computing time, which is not be possible by the direct application of the detailed chemical kinetics mechanism of hydrocarbon fuel combustion.

Non-isothermal Pyrolysis Characteristics of the Mixture of Waste Automobile Lubricating Oil and Polystyrene (폐윤활유와 Polystyrene 혼합물의 비등온 열분해반응 특성)

  • Kim, Seung-Soo;Chun, Byung-Hee;Park, Chan Jin;Kim, Sung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1063-1072
    • /
    • 2000
  • Kinetic tests on pyrolysis of the mixture of waste automobile lubricating oil and polystyrene were carried out with thermogravimetric technique at the heating rates of 0.5, 1.0, $2.0^{\circ}C/min$ in a stirred batch reactor. The activation energy and the reaction order were determined at conversions of 1 to 100% using differential method. The mixture of waste automobile lubricating oil and polystyrene was pyrolyzed at lower temperature rather than waste automobile lubricating oil and polystyrene. respectively. Also, the thermal decomposition took place in two broad reaction steps. The pyrolyzed oil of mixture represented high selectivity of styrene monomer and dimer like that of polystyrene pyrolyzed products.

  • PDF

Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis (촉매열분해를 이용한 백합나무 바이오오일의 연료 특성)

  • Chea, Kwang-Seok;Jeong, Han-Seob;Ahn, Byoung-Jun;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.