• Title/Summary/Keyword: 탄화거동

Search Result 179, Processing Time 0.032 seconds

Effects of Initial Concentration and Nutrients in Treatment of petroleum Hydrocarbon Contaminated Soils using a Slurry-Phase Bioreactor (슬러리상 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 있어서 초기농도 및 영양소의 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 1998
  • The purpose of this study was to evaluate effects of initial concentration and nutrients in treatment of petroleum hydrocarbon contaminated soils. The reactor used in this study was slurry-phase bioreactor of in-vessel type. Performance results on treatment of diesel fuel contaminated soils and micorbial growth were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) and the microbial growth were evaluated in combination with biodegradation rate. Effect of initial loading levels of 50,000 and 100,000mg TPH/kg soil was studied. Performance results with two reactors were showed at the total TPH removal rate of 90.5% and 90.8%, respectively. However, the reactor with the initial concentration of 50,000mg TPH/kg soil showed higher biological TPH removal efficiency except for removal by volatilization than the other Although the different amount of nutrients was applied in two reactors, there was no remarkable difference in microbial growth rate. However, considerable factor in this results was that applied different initial concentration to two reactors. Although initial concentration was two times higher than it applied to the reactor without addition of nutrients, in total and biological TPH removal rate the reactor with addition of nutrients showed a higher than the other.

  • PDF

Extended Unmixing-Mixing Scheme for Prediction of 3D Behavior of Porous Composites (다공성 복합재료의 삼차원 거동 예측을 위한 분리-혼합 기법의 확장)

  • Choi, Hoi Kil;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Pyrolysis and surface recession of charring composites are progressed primarily in the thickness direction. The unmixing-mixing scheme is applied to describe the in-plane and through-thickness behaviors of porous composites. The extended unmixing-mixing equations are based on transverse isotropy of unidirectionally fiber-reinforced composites. The strain components of gas pressure in pores, thermal expansion, and chemical shrinkage are included in the constitutive model. By analyzing micromechanical representative volume elements of porous composites, the validity of the derived equations are examined.

A Study on the Visualization Technique for Fuel Behavior and Fuel-Film Formation in the Intake Port of a S.I. Engine (가솔린 엔진 흡기 포트내의 연료 거동 및 벽류 생성 가시화 방법에 관한 연구)

  • Kim, B.G.;Lee, K.H.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.15-21
    • /
    • 1997
  • In a gasoline engine with port injection system, the fuel behavior in the intake port has significant influence on the HC emission and the precise A/F control. That is to say, it is inevitable that the injection direction and behavior of fuel injected in the intake port have an effect on the generation of unburned HC within a cylinder. In this paper, we visualized fuel behavior in the intake port using micro CCD camera synchronized with the stroboscope and investigated the fuel-film characteristics formed at the wall of intake port by processing image captured with VCR in the transparent intake port made of acryl. Using these measuring methods, it was found that fuel behavior and the formation of fuel-film in the intake port could be evaluated qualitatively. And results obtained by these methods show that 2-spray injector minimizes the fuel-film formed in the intake port of a DOHC gasoline engine.

  • PDF

A Tribological Study of SiC-Steel Couples (탄화규소-강 미끄럼에서의 마모특성)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • The wear behavior of SiC in SiC-steel sliding couple was investigated under various wear test conditions, such as solid state sliding - dry and wet air atmosphere - or lubricated sliding, sliding velocity and at-mosphere temperature. The effect of SiC fabrication process on the SiC wear rate was also studied under varying sliding velocities. Humidity of air plays a lubricating role in the solid state sliding, while the wear behavior is largely influenced by the sliding velocity, especially if the atmosphere is extremely dry. The fa-brication process of SiC and the surface roughness result in different wear rate depending on the magnitude of sliding velocity. High temperature is, among others, the most deteriorating factor of wear, thus being strongly wear-accelerating even under boundary lubrication.

  • PDF

Effects of Addition Gases(Hydrogen and Nitrogen Gas) of Diamond-like Carbon Films Deposited by RF PECVD) (RF PECVD로 증착된 다이아몬드상 탄소막의 보조가스 첨가의 영향)

  • Choi, Woon;Kim, Hyoung-June;Nam, Seoung-Eui
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 1997
  • DLC막은 여러가지 기술적인 응용에 매우 기대된느 재료이다. 탄화수소 가스의 플라즈마 분해에 의해 증착되는 DLC 막은 높은 경도, 화학적 안정성, 높은 전기 저항성, 적외선 영역의 투과성 등의 여러가지 우수한 성질을 지니고 있다. 그러나 이들막은 높은 내부응력으로 인하여 실제 응용에 상당한 제약을 받고 있다. 본 연구에서는 rf PECVD 법에 의해 합성된 다이아몬드상 탄소막을 보조가스 첨가에 따른 영향에 대하여 조사하였다. 수소가스를 첨가하여 합성된 DLC막의 잔류응력 거동은 낮은 이온 에너지 (V$_{b}$ $P^{1}$2/-20Volt/m Torr)에서 최대 잔류응력이 발생되지만, 질소 가스를 첨가시키면 높은 이온(V$_{b}$ P$_{1}$2/->70Volt/m Torr)에너지 영역에서 잔류응력의 감소가 나타났다. 수소 량이 증가하면 ion bombardment와 식각 작용을 하고, 질소의 경우 막의 표면 스퍼터링 현상이 발생되었다. 보조가스 첨가에 따라 S$P^{3}$net work구조의 생성과 소멸의 결합 구조를 형성하여, 보조가스 첨가는 DLC막의 잔류응력 거동에 영향을 미치는 것을 알 수 있었다. 이온 에너지에 따른막의 비저항은 막 합성 공정 조건에 관계없이 $10^{6}$-$10^{7}$ Ωm 의 범위에서 분포하고 있는 것으로 조사되었다. 이는 메탄가스(rf PECVD)로 합성된 DLC막의 비저항과 거의 일치하는 것으로 나타났다.

  • PDF

Effects of Carbides on Hydrogen-induced Delayed Fracture for the Energy Saving Wire (ESW) (선조철강의 탄화물에 따른 수소지연파괴 거동 분석)

  • Lee, J.B.;Kang, N.H.;Park, J.T.;Ahn, S.T.;Park, Y.D.;Cho, K.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.139-141
    • /
    • 2009
  • This study analyzed the effect of the microstructure and alloying element on hydrogen-induced delayed fracture properties for the Energy Saving Wire (ESW) developed recently. Specimens were produced with a diameter 6.5mm post to the deformation (0, 10, 20 and 30%), followed by injecting the hydrogen. The experimental results by using GAS chromatography showed that the more hydrogen was emitted for high-carbon steel (0.45%C steel and 0.35%C steel) than low-carbon steel(0.2%C-Cr steel and 0.2%C-Cr-Mo steel). And, 0.45%C steel, 0.35%C steel and 0.2%C-Cr-Mo steel exhibited the crack for 30% deformed specimen. The hydrogen emitted was analyzed with the amount, the spheroidization, and the size of the carbides.

  • PDF

Behaviors of Grain Growth in Carbide Added TiC Matrix Cermets (탄화물첨가 TiC기지 서멧의 입성장 거동)

  • Shin, Soon-GI;Lee, Jun-Hee;Lee, Hwa-Sang
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.825-830
    • /
    • 2002
  • The growth rate of solid grains in TiC-XC-2vol% and TiC-XC-30vo1% Ni cermets, where X=Zr, W or Mo, was fitted to an equation of the form $d^3$-$do^3$=Kt. The grain growth behavior during liquid phase sintering at 1673K decreased markedly with addition of $Mo_2$C or WC and increased with addition of ZrC. The contiguity ratio was greater in the alloys with smaller growth rate constant and decreased with increasing Ni content in the $TiC-Mo_2$C-Ni cermet. The grain growth mechanism could be explained by the effect of contiguous grain boundaries in restricting the overall grain growth.

Effect of Carbonization Temperature on Carbon Dioxide Adsorption Behaviors of mesoporous carbon (중기공 탄소의 탄화온도에 따른 이산화탄소 흡착 거동)

  • Jang, Dong-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.221.1-221.1
    • /
    • 2011
  • In this study, we prepared the nitrogen-containing carbon spheres with mesopore processed by a facile polymerization-induced colloid aggregation method including carbonization in order to investigate the characterization and the effect on their carbon dioxide adsorption behaviors. The carbonization temperature was varied in the range of $600^{\circ}C$ to $900^{\circ}C$. The nitrogen contents of the mesoporous carbon sphere were characterized using XPS. The carbon dioxide adsorption capacities of the prepared mesoporous carbon sphere were determined by the amounts of carbon dioxide adsorptions at 298 K and 1.0 atm. The results showed that the prepared mesoporous carbons were highly effective for the carbon dioxide adsorption due to the increasing the affinity of the basic functionalities of adsorbent surface to acidic carbon dioxide. Maximum adsorption capacities of carbon dioxide at $25^{\circ}C$ were achieved up to 106 mg/g.

  • PDF

Ni계/Ag계 금속필러와 c-BN의 브레이징 접합부에서 Ti의 영향

  • Lee, Jang-Hun;Lee, Yeong-Seop;Im, Cheol-Ho;Lee, Ji-Hwan;Song, Min-Seok
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.196-198
    • /
    • 2006
  • 이 연구는 CBN을 건전한 브레이징을 하기 위해서, CBN과 금속필러메탈 접합계면에서의 금속성분과 산화물, 탄화물의 거동을 분석하는데 있다. 진공 인덕션 브레이징으로 온도는 $950{\sim}1100^{\circ}C$에서 브레이징 유지시간은 $5{\sim}30$분로 실시하였다. 금속필러로는 Ni-7Cr-3Fe-3B-4Si(wt.%)와 Ag-25Cu-5Ti(wt.%)을 사용하여 브레이징된 CBN은 $950{\sim}1000$도, 유지시간 10분 사이에서 각각 건전한 계면과 표면을 얻을 수 있었으며, 계면에서 Ti-rich상과 화합물이 확인되었다. 이상의 결과로 부터 화합물의 생성과 건전한 접합공정은 브레이징 온도와 시간이 좌우하며, N과 B, Ti의 함유량이 CBN의 브레이징 접합 특성의 중요변수로 생각되어진다. CBN과 Ni계/Ag계 브레이징 필러의 계면에서의 미세조직 및 화학반응의 메커니즘은 SEM, EPMA, XRD를 이용하여 분석하였다.

  • PDF