• Title/Summary/Keyword: 탄자 비행속도

Search Result 2, Processing Time 0.017 seconds

Fabrication and Performance Analysis of Environment Friendly Double Core Bullets for Small Arms (2중 코어 구조의 소화기용 친환경 탄자 제조 및 특성 분석)

  • Hong, Jun-Hee;Jang, Tak-Soon;Song, Chang-Bin;Kang, Dae-Wha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.345-352
    • /
    • 2011
  • This paper focuses on the properties analysis of 9mm bullet dual structure core to substitute current lead core by environment-friendly combination of W-Cu-Ni system high density composite materials. So the four combination samples were made of dual core with the different center of gravity location backward or forward compare to that of lead type bullet, and we experimented about the performance of 9mm bullet dual structure core. In the experimental results, the outer shape of core of four environment friendly samples on the target maintain marginally, while the current lead core bullets are completely crushed after hitting the target. The penetration depth of environment friendly samples excel seven times to lead type bullet and the three out of four samples with forward adjusted center of gravity penetrate deep as twice as ones backward. The impact tolerance of all four samples satisfies military specification, however, more firing tests are required to improve reliability of scattering distribution.

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.