• Title/Summary/Keyword: 탄소흡수

Search Result 438, Processing Time 0.031 seconds

Evaluating Changes in Blue Carbon Storage by Analyzing Tidal Flat Areas Using Multi-Temporal Satellite Data in the Nakdong River Estuary, South Korea (다중시기 위성자료 기반 낙동강 하구 지역 갯벌 면적 분석을 통한 블루카본 저장량 변화 평가)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • Global warming is causing abnormal climates worldwide due to the increase in greenhouse gas concentrations in the atmosphere, negatively affecting ecosystems and humanity. In response, various countries are attempting to reduce greenhouse gas emissions in numerous ways, and interest in blue carbon, carbon absorbed by coastal ecosystems, is increasing. Known to absorb carbon up to 50 times faster than green carbon, blue carbon plays a vital role in responding to climate change. Particularly, the tidal flats of South Korea, one of the world's five largest tidal flats, are valued for their rich biodiversity and exceptional carbon absorption capabilities. While previous studies on blue carbon have focused on the carbon storage and annual carbon absorption rates of tidal flats, there is a lack of research linking tidal flat area changes detected using satellite data to carbon storage. This study applied the direct difference water index to high-resolution satellite data from PlanetScope and RapidEye to analyze the area and changes of the Nakdong River estuary tidal flats over six periods between 2013 and 2023, estimating the carbon storage for each period. The analysis showed that excluding the period in 2013 with a different tidal condition, the tidal flat area changed by up to approximately 5.4% annually, ranging from about 9.38 km2 (in 2022) to about 9.89 km2 (in 2021), with carbon storage estimated between approximately 30,230.0 Mg C and 31,893.7 Mg C.

CO2 Emission and Storage Evaluation of RC Underground Structure under Carbonation Considering Service Life and Mix Conditions with Fly Ash (탄산화 환경에 노출된 RC 지하구조물의 내구수명과 플라이애쉬 배합 특성을 고려한 탄소 배출 및 흡착 평가)

  • Kim, Seong-Jun;Mun, Jin-Man;Lee, Hack-Soo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.999-1009
    • /
    • 2014
  • In this paper, $CO_2$ emission and storage amount are evaluated for real RC (Reinforced Concrete) underground structure considering $CO_2$ amount including material manufacturing, moving, and construction, repairing timing stage regarding extended service life. Four mix proportions with mineral admixtures are prepared and $CO_2$ diffusion coefficient are obtained based on a micro modeling. Referred to carbonation durability limit state, $CO_2$ emission and storage amount are evaluated, which shows higher initial $CO_2$ emission is caused due to larger unit content of cement and the storage increases with more rapid carbonation velocity. Furthermore various $CO_2$ concentration is adopted for simulation of $CO_2$ evaluation including measured $CO_2$ concentration (600ppm). With higher concentration of $CO_2$ outside, carbonation velocity increases. In order to reduce $CO_2$ emission through entire service life, reducing initial $CO_2$ emission through mineral admixture like fly ash is more effective than increasing $CO_2$ storage through OPC since $CO_2$ is significantly emitted under manufacturing OPC and $CO_2$ storage in cover concrete of RC structure is not effective considering initial concrete amount in construction.

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes (강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구)

  • Kim, Jung-Seok;Yoon, Huk-Jin;Lee, Ho-Sun;Choi, Kyung-Hoon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

Carbon Storage and Uptake by Deciduous Tree Species for Urban Landscape (도시 낙엽성 조경수종의 탄소저장 및 흡수)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.160-168
    • /
    • 2012
  • This study generated regression models to estimate the carbon storage and uptake from the urban deciduous landscape trees through a direct harvesting method, and established essential information to quantify carbon reduction from urban greenspace. Tree species for the study included Acer palmatum, Zelkova serrata, Prunus yedoensis, and Ginkgo biloba, which are usually planted as urban landscape trees. Tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the 4 species by using diameter at breast height(dbh) as an independent variable. All the regression models showed high fitness with $r^2$ values of 0.94~0.99. Carbon storage and uptake per tree and their differences between diameter classes increased as the diameter sizes got larger. The carbon storage and uptake tended to be greatest with Zelkova serrata in the same diameter sizes, followed by Prunus yedoensis and Ginkgo biloba in order. A Zelkova serrata tree with 15cm in dbh stored about 54kg of carbon and annually sequestered 7 kg, based on a regression model for the species. The study has broken new grounds to overcome limitations of the past studies which substituted, due to a difficulty in direct cutting and root digging of urban landscape trees, coefficients from the forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates. Study results can be useful as a tool or skill to evaluate carbon reduction by landscape trees in urban greenspace projects of the government.

An Analysis of Local Quantity of Carbon Absorption, Fixation and Emission by Using GIS

  • Kim, Hyeon-Tae;Moon, Byeong-Eun;Choi, Eun-Gyu;Kim, Chi-Ho;Ryou, Young-Sun;Kim, Jong-Goo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.40-48
    • /
    • 2014
  • Due to increasing greenhouse gas emissions, global warming and abnormal weather phenomena it has become important on a national level to keep a count of greenhouse gases being emitted. We want to take advantage of any selected area, as the basic data for the calculation of greenhouse gas emissions, Forest and Grassland, Paddy fields, and Fields(crops), Greenhouse(crops), Pig farm, Cattle farm, Farm household(populations, agricultural machinery) and Vehicle, the basic building blocks shots with a small amount of per-unit basis, the statistics calculated based on regional carbon emissions through the literature and experimental. Carbon absorption 772,960 ton C/year, amount of fixation 487,477 ton C/year, amount of emission 1,112,607 ton C/year were noted in Gimje-si, and amount of carbon absorption 55,559 ton C/year, amount of fixation 25,864 ton C/year, amount of emissions 58,355 ton C/year in Gongdeok-myeon, respectively. The carbon absorption at Hwangsan-ri is 25,107 ton C/year, fixation 4,301 ton C/year, and emission 20,330 ton C/year respectively. We were able to estimate the amount of carbon according to the specific characteristics of each unit village, then expanding it to a large-scale and comparative analysis, therefore we were able to obtain basic data on the national levels of carbon absorption.

Carbon Storage and Absorption of Trees in the Ecological Restoration Area and Vegetation Conservation Area of Bulamsan Urban Nature Park (불암산 도시자연공원 생태복원지와 식생보전지 수목의 탄소저장량 및 흡수량)

  • Yang, Keum Chul;Kim, Jeong Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.284-293
    • /
    • 2020
  • We present a quantitative survey of the carbon storage and absorption capacity of tree species in the vegetation conservation and ecological restoration areas of Bulamsan urban nature park in Nowon-gu, Seoul. The density of the sawtooth oak (Quercus acutissima) community in the ecological conservation area is approximately 30 individuals/225 ㎡, while a further 20 species, such as Japanese snowbell (Styrax obassia), galcham oak (Quercus aliena), Asian Sweetleaf (Symplocos chinensis f. pilosa), East Asian ash (Fraxinus rhynchophylla), and Korean rhododendron (Rhododendron mucronulatum) are sparsely distributed. In contrast, the ecological restoration sites typically comprised Mongolian oak (Quercus mongolica), jolcham oak (Quercus serrata), and East Asian ash (Fraxinus rhynchophylla) plantations, with planting densities of 8.3, 7.7, and 14.3 individuals/25 ㎡ , respectively. Approximately 10 species, including Amur maple (Acer tataricum subsp. ginnala), Korean mountain ash (Sorbus alnifolia), Japanese spice bush (Lindera obtusiloba), and Korean rhododendron (Rhododendron mucronulatum) were identified in the ecologically restored area. The total amounts of carbon stored by the trees in the vegetation conservation and ecological restoration sites are 250.77 and 19.3 t C ha-1, respectively, and the total annual carbon uptakes are 10.28 and 2.33 t C ha-1 yr-1, respectively. The survey results are expected to provide important basic data for monitoring the carbon absorption capacity and carbon balance of green areas in the city.

A Study on the Baseline Carbon Stock for Major Species in Korea for Conducting Carbon Offset Projects based on Forest Management (산림경영형 산림탄소상쇄 사업설계를 위한 주요 수종별 베이스라인 흡수량 산정)

  • Kim, Young-Hwan;Jeon, Eo-Jin;Shin, Man-Yong;Chung, Il-Bin;Lee, Sang-Tae;Seo, Kyung-Won;Pho, Jung-Kee
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.439-445
    • /
    • 2014
  • In this study, we developed a dynamic stand yield model to estimate the baseline carbon stock, which is essentially required for a forest carbon offset project based on forest management. For developing the yield model, the data was acquired from the databases of the $5^{th}$ National Forest Inventory. The model was validated by comparing its estimations with field measurements that were conducted from 4 study sites (14 plots with thinning treatments) located in Hong-chun, Hoeng-sung, Yang-yang Daechi and Yang-yang Jungja. The difference between the estimations and the field measurements was less than 5%. Using the dynamic stand yield model, we estimated the changes in stand yield volume and carbon stocks for each species according to the baseline scenarios. As the results, we found that baseline carbon stock was the highest at Quercus acutissima stand (83.01tC/ha), while the lowest at Pinus rigida stand (32.17tC/ha) and Pinus densiflora stand of central region (39.09tC/ha). Hence, a project provider could get more carbon emission credits from an improved forest management project when considering the project with Pinus rigida stand or Pinus densiflora stand (central region). The baseline carbon stock and the dynamic stand yield model developed from this study would be useful for designing carbon offset projects based on improved forest management.

The Changes in Carbon Stocks and Emissions Assessment of Harvested Wood Products in Korea (우리나라의 수확된 목제품 탄소축적 변화량 및 배출량 평가)

  • Choi, Soo Im;Kang, Hag Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.644-651
    • /
    • 2007
  • This study compared and estimated the changes in carbon stocks and emissions of harvested wood products (HWP) by applying FAO statistics and domestic statistics for Korean HWP production, import, and export volume, which is almost always supposed to be included in the carbon emissions and removals inventory by country in negotiations since the 2nd commitment period (2013~2017) of the Kyoto Protocol, for assessing the changes in carbon stocks and emissions of HWP. As a result, when applying FAO statistics to the changes in carbon stocks of HWP as of 2005, stock-change approach (SCA) was estimated at 1.434 Tg C, atmospheric-flow approach (AFA) -1.330 Tg C, and production approach (PA) 0.597 Tg C. When applying Korean statistics, SCA was estimated at 1.246 Tg C, AFA -11.520 Tg C, and PA 0.444 Tg C. When applying FAO statistics to $CO_2$ emissions and removals from HWP, SCA showed a decrease of $-5,258Gg\;CO_2$ (removals), AFA showed an increase of $4,877Gg\;CO_2$ (emissions), and PA showed a decrease of $-2,189Gg\;CO_2$ (removals). When applying Korean statistics, SCA showed a decrease of $-4,569Gg\;CO_2$ (removals), AFA showed an increase of $5,573Gg\;CO_2$ (emissions), and PA showed a decrease of $-1,628Gg\;CO_2$, (removals). Therefore, the application of FAO statistics was shown to be more beneficial for the estimation of both the changes in carbon stocks and emissions of HWP by all methods other than that of Korean statistics.