• 제목/요약/키워드: 탄소환원

검색결과 460건 처리시간 0.03초

Schiff Base Co(II) 착물이 변성된 유리질 탄소전극에서 산소 환원의 전기촉매 효과 (Electrocatalytic Effect of Dioxygen Reduction at Glassy Carbon Electrode Modified with Schiff Base Co(II) Complexes)

  • 성정섭;채희남;최용국
    • 분석과학
    • /
    • 제11권6호
    • /
    • pp.460-468
    • /
    • 1998
  • $SOPDH_2$, $SNDH_2$, $EBNH_2$, $PBNH_2$ Schiff base 리간드와 이들의 [$Co(II)(SND)(H_2O)_2$], [$Co(II)(SOPD)(H_2O)_2$], [$Co(II)(EBN)(H_2O)$], [$Co(II)(PBN)(H_2O)$] 착물들을 합성하였다. Co(II) 착물들에서 Schiff base 리간드와 Co(II)의 몰 결합 비는 1:1로 주어졌으며 6배위 결합을 합성하였다. Co(II) 착물이 수식된 유리질 탄소전극을 사용하여 1 M KOH 수용액에서 산소 환원 반응을 순환 전압전류법으로 알아보았다. Schiff base Co(II) 착물이 수식된 전극에서의 산소의 환원 전류는 알몸 유리질 탄소전극에서 보다 더 증가하였고 환원 전위는 양전위 방향으로 더 이동하였다. 산소 환원 반응에 관여한 전자수와 교환 속도 상수 값은 순환 전압전류 곡선으로부터 구하였다. 산소 환원 반응경로는 최종 생성물이 $H_2O_2$로 가는 $2e^-$ 전이 반응을 나타내었으며 촉매가 수식된 전극에서의 교환 속도 상수는 알몸전극의 값에 비해 약 2~10배 정도 증가하였다.

  • PDF

Shewanella putrefaciens DK-1의 Fe(III) 환원 특성 (Utilization of Various Electron Acceptors in Shewanella putrefaciens DK-l)

  • 조아영;이일규;전은형;안태영
    • 미생물학회지
    • /
    • 제39권3호
    • /
    • pp.175-180
    • /
    • 2003
  • Shewanella putrefaciens DK-1은 그람음성, 통성 혐기성 세균으로 $NO_{3}$, Fe(III), Mn(IV), humic acid와 같은 다양한 전자수용체를 이용한다. S. putrefaciens DK-1의 전자공여체의 이용능력은 제한적이며, lactate나 formate는 좋은 전자공여체로 이용되지만 acetate나 toluene은 이용하지 못하였다. 다양한 전자수용체간의 경쟁을 살펴보기 위해 전자수용체로 Fe(III)와 같이 $NO_{3}^{-}$, $NO_{2}^{-}$를 넣어 주었을 매 Fe(III)의 환원은 저해되었다. 또한 5. putrefaciens DK-1은 전자수용체로 토양에 광범위하게 존재하는 humic acid를 이용하였으며, 환원된 humic acid는 질산염에 의해서 다시 산화되었다. Fe(III) 환원능이 있는 환경 시료를 이용하여 탄소, 질소, 인과 같은 제한 요인이 Fe(III) 환원세균의 활성에 미치는 효과를 조사하였다. 천호지의 저질토와 대호의 농토에 각각 탄소원, 질소원, 인을 첨가해 주었을 경우 S. putrefaciens DK-1과 탄소원을 동시에 첨가해 주었을 때 가장 높은 철 환원능을 보여주었다.

이성분계 Nb/Fe 혼합산화물 촉매에 의한 아황산가스의 제거 (Removal of SO2 over Binary Nb/Fe Mixed Oxide Catalysts)

  • 정종국;이석희;박대원;우희철
    • 청정기술
    • /
    • 제12권2호
    • /
    • pp.87-94
    • /
    • 2006
  • 철과 니오븀의 몰비가 1/0, 10/1, 5/1, 1/1, 1/5, 1/10 및 0/1 인 철-니오븀 촉매상에서 일산화탄소에 의한 아황산가스의 원소 황으로의 환원이 고정층 흐름반응기에서 연구되었다. 촉매 활성 및 선택도 면에서 우수한 상승효과를 철-니오븀 촉매에서 관찰할 수 있었으며, 가장 우수한 촉매 현상은 철과 니오븀의 몰비 1/1 촉매에서 관찰되었다. 활성화된 철-니오븀 촉매의 활성상은 XRD와 XPS 의 분석결과 $FeS_2$ 로 확인되었다. 일산화탄소에 의한 아황산가스의 선택적 환원은 카르보닐 황화물 반응중간체 메커니즘을 따르는 것으로 나타났다.

  • PDF

소성 분위기에 따른 인공골재의 미세구조 관찰 (Microstructural observation of artificial aggregates at various sintering atmospheres)

  • 박지윤;김유택
    • 한국결정성장학회지
    • /
    • 제16권2호
    • /
    • pp.71-75
    • /
    • 2006
  • 소성 분위기를 변화시켜 골재를 제조할 때 골재의 중앙에 만들어지는 블랙코어(black core) 형성정도의 차이와 골재 물성의 차이점을 알아보기 위해 적점토, 탄소(carbon), 산화철($Fe_2O_3$)이 혼합된 직경 10mm 구형골재를 조성별로 산화분위기, 중성분위기, 환원분위기에서 각각 소성시키고 각각의 비중, 흡수율, 블랙코어 면적비(%)를 측정하고 비교하였다. 산화분위기에서 소성시킨 골재는 껍질(shell)과 블랙코어가 뚜렷하게 구분되는 반면 중성 및 환원분위기에서 소성한 시편에서는 시편의 단면전체에 블랙코어가 형성되었다. 산화분위기와 중성분위기와는 달리 환원분위기에서 소성된 시편에서는 탄소첨가량이 증가할수록 비중이 증가했으며, 전반적인 비중은 가장 낮았다. 흡수율은 모든 분위기에서 탄소첨가량이 증가할수록 증가하는 경향을 보였다.

석탄가스화와 새로운 IGCC 시스템 (Coal gasification and A new IGCC system)

  • 김현영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.361-363
    • /
    • 2008
  • 탄소 개질반응은 $1200^{\circ}C$(도1) 이상에서 모든 탄화물질과 수분 또는 $CO_2$ 사이에서 흡열/환원반응이 일어나서 합성가스를 생성한다. 개질반응로는 산화반응로와 연결되어, 수소가스와 CO 가스의 혼합인,합성가스가 산화반응로 내에서 산소가스와 연소하여 열과 $H_2O+CO_2$를 생성하여 환원 반응로 내로 유입되어, 환원 반응로를 $1200^{\circ}C$ 이상으로 유지하고, $H_2O$$CO_2$는 석탄 속의 모든 탄소를 CO로 개질한다(도2). 동시에 수소가스가 생성되어 합성가스를 생성하게 된다. 석탄 속의 비탄소 물질인 슬래그(Slag)는 개질로 내에 남게 되는데, 개질로를 슬래그 융점(non-fluid point) 이하에서 고체상태로 포집함으로서 Fly-ash로 처리된다. 개질로 내의 온도를 $1200{\sim}1300^{\circ}C$(석탄 슬래그 융점)로 유지함으로서 개질반응이 지속되어 합성가스가 생성된다. IGCC 시스템에서는 합성가스를 가스터빈 속에서 $O_2E가스와 연소하여 고온의 가스를 생성하여 터빈을 가동해 발전을 하고 배출가스를 $1500{\sim}1700^{\circ}C$에서 배출한다. 재래식 IGCC(도4)에서는 ${\sim}1500^{\circ}C$의 배출가스를 열교환 시스템에 의해 증기를 생성하여 Steam turbine(증기터빈)을 가동하여 추가 전력을 생산했다. 그러나 본 시스템에서는 배출가스(증기와 $CO_2E 가스)를 위의 개질로에 유입하여 개질로 온도를 $1200{\sim}1300^{\circ}C$로 유지함으로서 더 많은 합성가스를 생성 하게 된다(도3). 이렇게 하여 Oxidation-reduction cycle을 형성하게 된다. 새로운 IGCC 시스템에서 가스 터빈의 배출가스가 석탄 개질로에 연결되고 석탄개질로의 합성가스 출구가 가스터빈의 가스 입구에 연결됨으로서,외부에너지 주입 없이 지속 가능한 가스화 반응과 터빈 사이클(Cycle)을 완성하여 IGCC 시스템의 석탄 열효율을 1단계 상승시켰다. 이렇게 설계된 석탄가스화기는 Lurgi형 석탄가스화 기와 달리 석탄개질반응의 효율을 높일 수 있고, 슬래그 처리가 간단하기 때문에 석탄가스화기가 소형화 될 수 있으며 슬래그(Slag)용융에 따른 석탄가스화기의 외벽손상을 피할 수 있다.

  • PDF