• Title/Summary/Keyword: 탄소저장량

Search Result 137, Processing Time 0.029 seconds

Development of Tree Carbon Calculator to Support Landscape Design for the Carbon Reduction (탄소저감설계 지원을 위한 수목 탄소계산기 개발 및 적용)

  • Ha, Jee-Ah;Park, Jae-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.42-55
    • /
    • 2023
  • A methodology to predict the carbon performance of newly created urban greening plans is required as policies based on quantifying carbon performance are rapidly being introduced in the face of the climate crisis caused by global warming. This study developed a tree carbon calculator that can be used for carbon reduction designs in landscaping and attempted to verify its effectiveness in landscape design. For practical operability, MS Excel was selected as a format, and carbon absorption and storage by tree type and size were extracted from 93 representative species to reflect plant design characteristics. The database, including tree unit prices, was established to reflect cost limitations. A plantation experimental design to verify the performance of the tree carbon calculator was conducted by simulating the design of parks in the central region for four landscape design, and the causal relationship was analyzed by conducting semi-structured interviews before and after. As a result, carbon absorption and carbon storage in the design using the tree carbon calculator were about 17-82% and about 14-85% higher, respectively, compared to not using it. It was confirmed that the reason for the increase in carbon performance efficiency was that additional planting was actively carried out within a given budget, along with the replacement of excellent carbon performance species. Pre-interviews revealed that designers distrusted data and the burdens caused by new programs before using the arboreal carbon calculator but tended to change positively because of its usefulness and ease of use. In order to implement carbon reduction design in the landscaping field, it is necessary to develop it into a carbon calculator for trees and landscaping performance. This study is expected to present a useful direction for ntroducing carbon reduction designs based on quantitative data in landscape design.

Effects and Improvement of Carbon Reduction by Greenspace Establishment in Riparian Zones (수변구역 조성녹지의 탄소저감 효과 및 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.16-24
    • /
    • 2015
  • This study quantified storage and annual uptake of carbon for riparian greenspaces established in watersheds of four major rivers in South Korea and explored desirable strategies to improve carbon reduction effects of riparian greenspaces. Greenspace structure and planting technique in the 40 study sites sampled were represented by single-layered planting of small trees in low density, with stem diameter at breast height of $6.9{\pm}0.2cm$ and planting density of $10.4{\pm}0.8trees/100m^2$ on average. Storage and annual uptake of carbon per unit area by planted trees averaged $8.2{\pm}0.5t/ha$ and $1.7{\pm}0.1t/ha/yr$, respectively, increasing as planting density got higher. Mean organic matter and carbon storage in soils were $1.4{\pm}0.1%$ and $26.4{\pm}1.5t/ha$, respectively. Planted trees and soils per ha stored the amount of carbon emitted from gasoline consumption of about 61 kL, and the trees per ha annually offset carbon emissions from gasoline use of about 3 kL. These carbon reduction effects are associated with tree growth over five years to fewer than 10 years after planting, and predicted to become much greater as the planted trees grow. This study simulated changes in annual carbon uptake by tree growth over future 30 years for typical planting models selected as different from the planting technique in the study sites. The simulation revealed that cumulative annual carbon uptake for a multilayered and grouped ecological planting model with both larger tree size and higher planting density was approximately 1.9 times greater 10 years after planting and 1.5 times greater 30 years after than that in the study sites. Strategies to improve carbon reduction effects of riparian greenspaces suggest multilayered and grouped planting mixed with relatively large trees, middle/high density planting of native species mixed with fast-growing trees, and securing the soil environment favorable for normal growth of planting tree species. The research findings are expected to be useful as practical guidelines to improve the role of a carbon uptake source, in addition to water quality conservation and wildlife inhabitation, in implementing riparian greenspace projects under the beginning stage.

Carbon Reduction and Enhancement for Greenspace in Institutional Lands (공공용지 녹지의 탄소저감과 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • This study quantified annual uptake and storage of carbon by urban greenspace in institutional lands and suggested improvement of greenspace structures to enhance carbon reduction effects. The study selected a total of five study cities including Seoul, Daejeon, Daegu, Chuncheon, and Suncheon, based on areal size and nationwide distribution. Horizontal and vertical greenspace structures were field-surveyed, after institutional greenspace lots were selected using a systematic random sampling method on aerial photographs of the study cities. Annual uptake and storage of carbon by woody plants were computed applying quantitative models of each species developed for urban landscape trees and shrubs. Tree density and stem diameter (at breast height) in institutional lands averaged 1.4±0.1 trees/100 ㎡ and 14.9±0.2 cm across the study cities, respectively. Of the total planted area, the ratio of single-layered planting only with trees, shrubs, or grass was higher than that of multi-layered structures. Annual uptake and storage of carbon per unit area by woody plants averaged 0.65±0.04 t/ha/yr and 7.37±0.47 t/ha, which were lower than those for other greenspace types at home and abroad. This lower carbon reduction was attributed to lower density and smaller size of trees planted in institutional lands studied. Nevertheless, the greenspace in institutional lands annually offset carbon emissions from institutional electricity use by 0.6 (Seoul)~1.9% (Chuncheon). Tree planting in potential planting spaces was estimated to sequester additionally about 18% of the existing annual carbon uptake. Enhancing carbon reduction effects requires active tree planting in the potential spaces, multi-layered/clustered planting composed of the upper trees, middle trees and lower shrubs, planting of tree species with greater carbon uptake capacity, and avoidance of the topiary tree maintenance. This study was focused on finding out greenspace structures and carbon offset levels in institutional lands on which little had been known.

Estimating Greenhouse Gas (GHG) Removal by Cryptomeria japonica and Chamaecyparis obtusa Stands Using New Stem Volume Tables (신규 입목수간재적표를 활용한 삼나무 및 편백 임분의 온실가스 흡수량 추정)

  • Min Woo Lee;Sun Jeoung Lee;Joung Won You;Jin Taek Kang;Young Jin Lee;Chi Ung Ko
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.515-522
    • /
    • 2023
  • The aim of this study was to quantitatively evaluate a new stem volume table for estimating the growth, carbon storage, and greenhouse gas (GHG) absorption in Cryptomeria japonica and Chamaecyparis obtusa stands and to provide suggestions for improving the domestic GHG inventory. Carbon storage and GHG absorption were estimated using growing stock data obtained from invariable sub-sample plots between the 6th and 7th national forest inventories. We assessed changes in growing stock using the parameters employed by Kozak (1988) and Versions 1 and 2 of the stem volume table. Version 2 has new stem tables for 16 species, including Cryptomeria japonica, which were unavailable in Version 1. Version 2 also includes new data for trees with diameters at breast height equal to or greater than 30 cm. We found greater growing stock values using Version 2 than Version 1 for both stands, and the differences were statistically significant (p<0.001). Applying the new stem volume table increased GHG absorption by 22% for the Cryptomeria japonica stand and 13% for the Chamaecyparis obtusa stand. The growing stock estimation method used in this study should therefore be applied to re-estimate GHG absorptions in the forestry sector to produce accurate statistics for the IPCC guidelines.

Carbon Storage and Uptake by Deciduous Tree Species for Urban Landscape (도시 낙엽성 조경수종의 탄소저장 및 흡수)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.160-168
    • /
    • 2012
  • This study generated regression models to estimate the carbon storage and uptake from the urban deciduous landscape trees through a direct harvesting method, and established essential information to quantify carbon reduction from urban greenspace. Tree species for the study included Acer palmatum, Zelkova serrata, Prunus yedoensis, and Ginkgo biloba, which are usually planted as urban landscape trees. Tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the 4 species by using diameter at breast height(dbh) as an independent variable. All the regression models showed high fitness with $r^2$ values of 0.94~0.99. Carbon storage and uptake per tree and their differences between diameter classes increased as the diameter sizes got larger. The carbon storage and uptake tended to be greatest with Zelkova serrata in the same diameter sizes, followed by Prunus yedoensis and Ginkgo biloba in order. A Zelkova serrata tree with 15cm in dbh stored about 54kg of carbon and annually sequestered 7 kg, based on a regression model for the species. The study has broken new grounds to overcome limitations of the past studies which substituted, due to a difficulty in direct cutting and root digging of urban landscape trees, coefficients from the forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates. Study results can be useful as a tool or skill to evaluate carbon reduction by landscape trees in urban greenspace projects of the government.

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

Estimation of Carbon Storages and Fluxes by Ecosystem Type in Korea (국내 생태계 유형별 탄소 저장 및 거동 산정 연구 현황 분석)

  • Inyoung Jang;Heon Mo Jeong;Sang-Hak Han;Na-Hyun Ahn;Dukyeop Kim;Sung-Ryong Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.417-425
    • /
    • 2023
  • As climate change gets severe, the ecosystem acts as an important carbon sink, therefore efforts are being made to utilize these functions to mitigate climate change. In this study, we inventoried and analyzed the previous studies related to carbon storage and flux by ecosystem type (forest, cropland, wetland, grassland, and settlement) and carbon pool (aboveground and belowground biomass, dead wood, Litter, soil organic carbon, and ecosystem) in Korean ecosystems. We also collected the results of previous studies and calculated the average value of carbon storage and flux for each ecosystem type and carbon pool. As a result, we found that most (66%) of Korea's carbon storage and fluxes studies were conducted in forests. Based on the results of forest studies, we estimated the storage by carbon stock. We found that much carbon is stored in vegetation (aboveground: 4,018.32 gC m-2 and belowground biomass: 4,095.63 gC m-2) and soil (4,159.43 gC m-2). In particular, a large amount of carbon is stored in the forest understory. For other ecosystem types, it was impossible to determine each carbon pool's storage and flux due to data limitations. However, in the case of soil organic carbon storage, the data for forests and grasslands were comparable, showing that both ecosystems store relatively similar amounts of carbon (4,159.43 gC m-2, 4,023.23 gC m-2, respectively). This study confirms the need to study carbon in rather diverse ecosystem types.

Carbon Storage and Uptake by Evergreen Trees for Urban Landscape - For Pinus densiflora and Pinus koraiensis - (도시 상록 조경수의 탄소저장 및 흡수 - 소나무와 잣나무를 대상으로 -)

  • Jo, Hyun-Kil;Kim, Jin-Young;Park, Hye-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • This study generated regression models through a direct harvesting method to estimate carbon storage and uptake by Pinus densiflora and Pinus koraiensis, the major evergreen tree species in urban landscape, and established essential information to quantify carbon reduction by urban trees. Open-grown landscape tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the two species by using diameter at breast height (DBH) as an independent variable. All the regression models showed high fitness with $r^2$ values of higher than 0.98. While carbon storage and uptake by young trees tended to be greater for P. densiflora than for P. koraiensis in the same diameter sizes, those by mature trees with DBH sizes of larger than 20 cm showed results to the contrary due to a difference in growth rates. A tree of P. densiflora and P. koraiensis with DBH of 25 cm stored 115.6 kg and 130.0 kg of carbon, respectively, and annually sequestered 9.4 kg and 14.6 kg. The study has broken new grounds to overcome limitations of the past studies which quantified carbon reduction of the study species by substituting, due to a difficulty in direct cutting and root digging of landscape trees, coefficients from forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates.

An Application of Linear Programming to Multiple-Use Forest Management Planning (다목적(多目的) 산림경영계획(山林經營計劃)을 위한 선형계획법(線型計劃法)의 응용(應用))

  • Park, Eun Sik;Chung, Joo Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.273-281
    • /
    • 1999
  • In this study, linear programming (LP) was applied to solving for optimal harvesting schedules of multiple-use forest management in Mt. Kari area managed by Chunchun National Forest Station. Associated with the geographic characteristics, the study area was classified into 4 large management units or watersheds and simultaneously applied were the site-specific levels of management constraints : nondeclining yield, initial cut for existing stands, % cut area, the volume of soil erosion, timber production and carbon storage, ending inventory condition and % area species selection for regeneration. The problem was formulated using both Model I and Model II techniques. In this paper, the formulations are presented and the results of the optimal solutions are discussed for comparison purposes.

  • PDF

Estimating Litter Carbon Stock and Change on Forest in Gangwon Province from the National Forestry Inventory Data (국가산림자원조사 자료를 활용한 강원도 산림내 낙엽층의 탄소저장량 및 변화량 추정)

  • Lee, Sun Jeoung;Kim, Raehyun;Son, Yeong Mo;Yim, Jong Su
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2017
  • This study was conducted to estimate litter carbon stock change from the National Forest Inventory (NFI) data for national greenhouse gas inventory report. Litter carbon stocks were calculated from the NFI dataset in NFI5 (2008) and NFI6 (2013) in Gangwon province. Total carbon stock change of litter was $0.68{\pm}0.71\;t\;C/ha$ from NFI5 (2008) to NFI6 (2013), however, there was no significant difference between the both dataset at 2008 and 2013 year. Litter carbon stock of coniferous stands was higher than deciduous stands in NFI5 (2008) and NFI6 (2013) (P<0.05). This study was limited to pilot study, so we will assess litter carbon stock using more complete data from NFI systems. It can be used as data sources for national greenhouse gas inventory report on forest sector.