• Title/Summary/Keyword: 탄소요소

Search Result 814, Processing Time 0.022 seconds

A Experimental and Analytical Study on One directional Bond Behavior of Grid typed CFRP Reinforcement (격자형 탄소 보강재의 일방향 부착특성에 대한 실험 및 해석적 연구)

  • Chi Hoon Noh;Nak Seop Jang;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.77-86
    • /
    • 2024
  • In this study, authors attempted to determine the bond behavior characteristics to utilize Grid typed CFRP reinforcement as an alternative to steel rebar used as concrete reinforcement. Since it is difficult to understand the influence of the transverse grid length of the Grid typed CFRP reinforcement in the existing numerical analysis proposal for bond behavior, a nonlinear 3D model was created and finite element analysis was performed. To perform the analysis, the analysis was conducted by inputting a nonlinear material model and modeling the bond interface characteristics between the Grid typed CFRP reinforcement and concrete and comparing them with the actual direct pull-out test results. The bond behavior characteristics of the Grid typed CFRP reinforcement were found to be very dominated by the factors of the transverse grid, and showed a tendency to continuously increase load.

유한요소해석에 의한 나노인덴테이션의 탄소성 변형에 관한 연구

  • 양현윤;조상봉;김지수;윤존도;김봉섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.273-273
    • /
    • 2003
  • 나노인덴테이션은 압자를 수 $\mu\textrm{N}$의 힘으로 시편에 압입을 시켜 재료의 경도나 탄성계수와 같은 기계적 특성을 평가하는 압입경도 시험법이다. 압입 변위를 나노미터범위로 조절할 수 있어 기존에 접근할 수 없었던 박막의 기계적 특성을 평가하는데 응용이 넓어지고 있다. 본 연구에서는 나노인덴테이션에서 제공되는 하중-변위곡선과 유한요소해석의 결과를 비교하여 유한요소해석의 신뢰성을 검증하고, 유한요소해석에서 여러 가지 재료의 특성에 따른 파일업과 싱크인 현상을 규명 하고자 한다.

  • PDF

GAP요소를 이용한 접촉 알고리즘

  • 정기택
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.52-61
    • /
    • 1997
  • 본 논문에서는 기존의 gap 요소의 단점을 보완하여 간단하면서도 효율적인 접촉 알고리즘을 개발하였다. 다양한 수치 예제를 통하여, 제안된 접촉 알고리즘의 효율성 및 정확도를 검증하였다. 새로운 gap 요소는 일반적인 유한요소와 결합되어, 마찰이 포함되지 않은 삼차원 탄소성 접촉 문제의 해를 구하는데 이용될 수 있다. 개발된 접촉 알고리즘은 최적화기법을 도입하지 않고 시행착오기법에 기반을 두면서도 접촉문제에 대한 반복해의 수렴성 및 안정성을 보장한다. 또한 gap요소를 이용한 접촉 알고리즘은 코드화가 용이하므로, 기존의 복잡한 알고리즘에 대한 좋은 대안이 될 것이다.

  • PDF

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

Elasto-Plastic Analysis of Underground Openings Considering the Effect of Excavation (굴착영향을 고려한 지하공동의 탄소성해석)

  • 최규섭;김대홍;황신일;심재구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.225-234
    • /
    • 1998
  • The behavior of the underground opening depends mainly on the magnitude of the initial stress existing before excavation and on the stress redistribution due to the excavation. In the case of elasto-plastic materials such as rock mass, as the structural behavior of surrounded opening due to excavation depends on the stress path, methods and sequence of excavation have influences on the results of numerical analysis. Therefore, in order to design underground openings with large cross-section such as underground nuclear power plants, radioactive waste disposal cavems, oil storage caverns, and so on more reasonably it is desirable to consider the effect of the excavation sequence in the analysis. In this paper, the underground structure is analyzed using the finite element method and the distinct element methods with a view to review the the effect of the excavation sequence. Based on the results of the analysis the followings are discussed : influence of excavation shape and sequence, effect of structural reinforcements, influence of multi caverns.

  • PDF

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Rupture Prediction of the Rupture Disk Using Elasto-Plastic Analysis (탄소성해석을 이용한 파열판의 파열예측)

  • Han, Houk-Seop;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Rupture disks are a kind of safety device in high pressure equipment and they are used to control rupture pressure in the solid rocket motor. In this paper, a series of rupture experiments was performed using rupture disks made of AISI 316L and rupture pressure of rupture disks was calculated through various assumptions in relation between elasto-plastic material properties and true stress-strain curve. Experiment and FEA indicated rupture pressure is determined by size of rupture disks. As a result of elasto-plastic analysis, only multi-linear stress-strain curve was able to calculate meaningful estimations. Experimental results also showed rupture location are decided by the size of rupture disks. Experimental and FEA results will be applied to control rupture pressure of disks.