• Title/Summary/Keyword: 탄소섬유 보강

Search Result 375, Processing Time 0.035 seconds

Shear Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판 (CFRP Strip)으로 보강된 철근콘크리트 부재의 전단거동)

  • Lim, Dong-Hwan;Nam, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2008
  • The main goal of this study was to examine the shear behavior of reinforced concrete beams strengthened with CFRP strups. Seven rectangular beams were tested. The test variables were the configuration types, spacing length of CFRP strips and the amount of reinforced stirrups bars. From this experimental study, the shear capacity of beams strengthened with CFRP increased significantly compared to the beam without CFRP strip. Maximum increase of ultimate shear strength was found about 100% more than that of the beam without a CFRP strip and the CFRP strips attached in the shear region can resist the occurrence of the initial shear cracks and the propagation of major shear cracks. In this test, most of the shear strengthened beams failed suddenly due to the debonding of CFRP strips. A calculation of the shear strength of reinforced beams strengthened with CFRP strips based on the effective stresses was conducted and the comparisons were made with the test results.

A Study on the Behavior of the Adhesive Failure of RC Beams Strengthened by Carbon Fiber Sheet (탄소섬유쉬트로 보강된 철근콘크리트보의 부착파괴거동에 관한 실험적 연구)

  • 박칠림;황진석;박형철;백명종
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.157-164
    • /
    • 1997
  • 최근 손상된 구조물에 탄소섬유쉬트 보강공법이 많이 사용되고 있다. 탄소섬유쉬트 보강에 따른 휨내력의 증진이 이루어지기 위해서는 보와 탄소섬유쉬트의 일체거동이 이루어져야 하며, 쉬트단부에서 부착파괴가 발생하지 않아야 한다. 따라서 이번 실험에서는 탄소섬유쉬트의 보강매수에 따른 부착파괴의 거동을 살펴보았다. 전시험체에서 부착파괴가 발생하였으며 부착파괴가 발생한 하중의 크기는 보강매수에 관계없이 비슷하였다. 부착파괴의 거동은 순수부착파괴와 피복박리파괴로 구분될 수 있었으며 부착응력은 단부에서 집중현상이 나타났고 집중된 응력의 크기는 15.39~41.42kg/$\textrm{cm}^2$로 나타났다. 정착길이내의 평균부착응력은 6.85~8.99kg/$\textrm{cm}^2$으로서 평균 7.38kg/$\textrm{cm}^2$이고 이 값은 이론치인 6.19kg/$\textrm{cm}^2$보다 약간 높으며 설계부착응력인 6kg/$\textrm{cm}^2$에 부합되는 것으로 나타났다. 따라서 설계부착응력 6kg/$\textrm{cm}^2$은 정착길이의 설계시 합리적 값으로 평가되었다.

Structural Behavior of Reinforced Concrete Beams with Different Amounts of Reinforcing Steel and Carebon Fibre Sheet (탄소섬유쉬트보강된 철근콘크리트 보의 보강 철근비에 따른 구조적 거동)

  • 오용복;권영웅
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.119-126
    • /
    • 1998
  • 본 연구는 철근비와 보강판비를 조정한 보강철근비를 변수로 탄소섬유쉬트 접착된 철근콘크리트 보에 대하여 그 변형특성과 강도특성 및 파괴모드를 실험적으로 고찰한 것이다. 철근비와 보강판비가 증가할수록 최대내력은 증가하는 경향을 보이지만 탄소섬유쉬트의 겹수가 증가할수록 철근비 증가의 경우와는 달리 에너지흡수능력이 저하된다. 철근비와 보강판비에 따른 파괴모드를 구분하고 시험결과와 비교, 고찰하였던 바 파괴모드와 연성의 측면에서 보강철근비 е의 한계값을 0.87 max으로 제안하였다.탄소섬유쉬트와 철근콘크리트 보의 합성작용이 철근항복이후까지 유지되어 비선형적인 거동을 보임으로써 구조적거동이 양호하게 나타나는 것으로 입증되었다.

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.

New Technique on the Improvement of Earthquake-Resistant Performance for the Retrofitting of Existing Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 내진성능 개선 보강 신기술)

  • 하기주
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • In this study, experimental research was carried out to improve earthquake-resistant performance for the retrofitting of reinforced concrete beam-column joints using carbon fiber materials in existing reinforced concrete building. Six reinforced concrete beam-column joints were constructed and tested to evaluate the retrofitting effect of test variables, such as the retrofitting materials and retrofitting region(plastic hinge, beam-column joint) under load reversals. Test results show that retrofitting specimen(RPC-CP2, RPC-CR, RJC-CP, RJC-CR), using new materials(carbon fiber plate, carbon fiber rod and carbon fiber sheet), designed by the improvement of earthquake-resistant performance and ductility, attained more load-carrying capacity and stable hysteretic behavior.

A Study on Microscopic Damage Behavior of Carbon Fiber Sheet Reinforced Concrete using Acoustic Emission Technique (음향방출 기법을 이용한 탄소섬유시트강화 콘크리트의 미시적 손상 거동에 관한 연구)

  • 이진경;이준현;정성륜
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.62-70
    • /
    • 1999
  • It was well recognized that damages associated mainly with the aging of civil infrastructrues were one of very serious problems for assurance of safety and reliability. In recent, carbon fiber sheet(CFS) has been widely used for reinforcement and rehabitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bend test has been carried out to understand the damage progress and micro-failure mechanism of CFS reinforced concretes. For these purposes, four kinds of specimens are used, that is, concrete, respectively. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and failure mechanism of specimens. In addititon, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for four types of these specimens.

  • PDF

A Study on the Shear Resisting Effect of Filling-up Carbon Fiber Rod Plastic in Reinforced Concrete Beam without Web Reinforcement (전단보강근이 없는 철근콘크리트보의 매립형 CFRP 전단보강효과에 대한 연구)

  • Kim, Young-Sik;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.57-63
    • /
    • 2005
  • The reinforced concrete becomes deteriorated. In strengthening of reinforced concrete structure, it is recently useing FRP. The purpose of this study is to investigate the shear resisting effort of filling-up CFRP in reinforced concrete beams without web reinforced. Six specimens were manufactured and tested. In the test result, it was analysis. The main variables in the test were a space and volume of CFRP.

  • PDF

FE Analysis of RC Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 RC 보의 유한요소해석)

  • 한상호;이경동
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • Carbon fiber sheet has been used to rehabilitate many types of reinforced concrete members with its superior characteristics such as their lightweight, high strength, corrosion resistance, and easy execution. But the failure behavior of reinforced concrete members show a high variation by the bond characteristics between carbon fiber sheet and concrete surface. In this study, a bond stress-slip model, which accounts for changes in bonding behavior between concrete and carbon fiber sheet with some link elements, is proposed. The link elements are used to represent the concrete-carbon fiber sheet interface. To investigate the efficiency of this method, the analytical solutions for the behavior of reinforced concrete beam strengthened with carbon fiber sheet are compared with experimental ones. Results from the proposed model comparatively well agree with the experimental results.

The Strengthening Effects of Concrete Columns Confined with Carbon Fiber Sheets along the Fiber Direction (탄소섬유쉬트 올방향에 따른 콘크리트 기둥 보강성능)

  • Kim, Yang-Jung;Hong, Gap-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Carbon, Aramid, Boron and Glass fibers are used as fibrous materials to promote structural bearing strength. Of these fiber types, carbon fiber is the most commonly used material, and is characterized by having a one-way direction, which is strengthened by tensile strength due to the attached direction only, while other types of fibers are two-way. Therefore, when applied in the field, the attachment direction of fiber is a very important factor. However, when fiber direction is not mentioned in the design drawing, there sometimes is no improvement in structural strength, as the fiber is being installed by a site engineer or workers who lack structural knowledge. The purpose of this study was to propose an optimal direction of carbon fiber through a comparison & analysis of reinforcing efficiency with reinforced experimental columns that used carbon fibers in each of the inclined, horizontal and vertical directions. According to the results, horizontal direction in the reinforced column was improved by 153.43%, but vertical direction was 104.61% only, and it was understood this was due to increased tensile strength along the fiber direction. For this reason, it is necessary to include information regarding fiber direction in design and site management.

Flexural Capacity of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨성능)

  • Park, Hyun-Jung;Cho, Baik-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.177-187
    • /
    • 2004
  • This investigation attempts to analyze the flexural behavior of a strengthened beam with carbon fiber sheets in three stages according to the conditions of the constituents : elastic stage, pre-yielding stage, and post-yielding stage. The proposed analytical method for strengthened beams is compared with the experimental results such as yield load, ultimate load, and flexural rigidities. The contributions of the constituents to the strengthened beam capacity are examined from the flexural analysis. The validity of using KCI strength method to estimate ultimate moment of a strengthened beam is also investigated.