• Title/Summary/Keyword: 탄소섬유

Search Result 1,454, Processing Time 0.089 seconds

Preparation of Electrospun PI-based ACF Web for Electrode of Electric Double Layer Capacitior(EDLC) (정전기 방사에 의한 EDLC 전극용 폴리이미드계 활성탄소섬유 웹의 제조)

  • Choi, Young-Ok;Kim, Chan;Yang, Gab-Seung
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.134-137
    • /
    • 2003
  • 탄소섬유나 활성탄소섬유(activated carbon fiber, ACF)는 일반적으로 출발물질에 따라 polyacrylonitrile(PAN)계, 아크릴(acryl)계, 피치(pitch)계, 페놀(phenol)계 등으로 분류할 수 있다. 보통 습식, 용융 혹은 용융분사(melt-blown) 방사 방법에 의해 섬유 형태로 형성한 다음 산화성 가스 분위기에서 불융화 과정을 거쳐 열에 대한 안정성을 부여하여 불활성 분위기에서 탄소화하여 탄소섬유를 제조하거나, 수증기나 이산화 탄소와 같은 산화성 분위기에서 활성화하여 활성탄소섬유를 제조한다. (중략)

  • PDF

A Study on the Behavior of the Adhesive Failure of RC Beams Strengthened by Carbon Fiber Sheet (탄소섬유쉬트로 보강된 철근콘크리트보의 부착파괴거동에 관한 실험적 연구)

  • 박칠림;황진석;박형철;백명종
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.157-164
    • /
    • 1997
  • 최근 손상된 구조물에 탄소섬유쉬트 보강공법이 많이 사용되고 있다. 탄소섬유쉬트 보강에 따른 휨내력의 증진이 이루어지기 위해서는 보와 탄소섬유쉬트의 일체거동이 이루어져야 하며, 쉬트단부에서 부착파괴가 발생하지 않아야 한다. 따라서 이번 실험에서는 탄소섬유쉬트의 보강매수에 따른 부착파괴의 거동을 살펴보았다. 전시험체에서 부착파괴가 발생하였으며 부착파괴가 발생한 하중의 크기는 보강매수에 관계없이 비슷하였다. 부착파괴의 거동은 순수부착파괴와 피복박리파괴로 구분될 수 있었으며 부착응력은 단부에서 집중현상이 나타났고 집중된 응력의 크기는 15.39~41.42kg/$\textrm{cm}^2$로 나타났다. 정착길이내의 평균부착응력은 6.85~8.99kg/$\textrm{cm}^2$으로서 평균 7.38kg/$\textrm{cm}^2$이고 이 값은 이론치인 6.19kg/$\textrm{cm}^2$보다 약간 높으며 설계부착응력인 6kg/$\textrm{cm}^2$에 부합되는 것으로 나타났다. 따라서 설계부착응력 6kg/$\textrm{cm}^2$은 정착길이의 설계시 합리적 값으로 평가되었다.

Adsorption and desoption property of activated carbon fiber coated with transition metal (전이금속 코팅 활성탄소섬유의 흡착 및 탈착특성)

  • You, Seung-Han;Kim, Jung-Su;Jang, Hyun-Tae;Cha, Wang-Seog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.286-288
    • /
    • 2011
  • 활성탄소섬유의 유해 미생물의 번식 억제력을 조사하기 위해 한천베지배양법을 이용하였다. 전이금속으로 코팅된 활성탄소섬유는 일부 유해 미생물에서 번식억제력이 나타났으며, 유해 미생물은 인간의 피부 부종을 야기시키는 미생물인 candida albicans이었다. 그리고 코팅 활성탄소섬유의 흡 탈착력은 코팅되지 않은 활성탄소섬유보다 약 5% 내외로 감소함을 알 수 있었다.

  • PDF

A Study on Microscopic Damage Behavior of Carbon Fiber Sheet Reinforced Concrete using Acoustic Emission Technique (음향방출 기법을 이용한 탄소섬유시트강화 콘크리트의 미시적 손상 거동에 관한 연구)

  • 이진경;이준현;정성륜
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.62-70
    • /
    • 1999
  • It was well recognized that damages associated mainly with the aging of civil infrastructrues were one of very serious problems for assurance of safety and reliability. In recent, carbon fiber sheet(CFS) has been widely used for reinforcement and rehabitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bend test has been carried out to understand the damage progress and micro-failure mechanism of CFS reinforced concretes. For these purposes, four kinds of specimens are used, that is, concrete, respectively. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and failure mechanism of specimens. In addititon, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for four types of these specimens.

  • PDF

Effect of Diffusion on the Interfacial Adhesion of Poly(hydroxy ether) Coated Caron Fibers (계면확산에 의한 Poly(hydroxy ether) 코팅된 탄소섬유의 계면접착력 변화 연구)

  • 강현민;윤태호
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.15-21
    • /
    • 1999
  • Carbon fibers were coated with carboxy modified poly(hydroxy ether)(C-PHE, water dispersed), water soluble polymers poly(hydroxy ether ethanol amine)(PHEA) or water insoluble poly(hydroxy ether)(PHE). Interfacial shear strength of polymer coated carbon fibers was measured by micro-droplet tests with vinyl ester resin, and approximately 30 samples were tested. The interfacial adhesion of poly-mers to carbon fibers was also evaluated, and diffusion behavior of polymer films in vinyl ester resin was investigated. The carbon fibers after testing and diffusion samples were analysed by SEM in order to understand adhesion mechanism. Interfacial shear strength of carbon fibers was enhanced by the coating of PHE and C-PHE which have good or marginal solubility in vinyl ester resin, respectively, but not by the coating of PHEA possibly due to the poor solubility in vinyl ester resin.

  • PDF

Ductility Capacity for Concrete Filled Steel Circular Tubes Reinforced by Carbon Fiber Sheets(CFSs) (탄소섬유쉬트로 보강된 콘크리트충전 원형강관기둥의 연성능력)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • This paper presents the experiment results for a CFT column confined by carbon fiber sheets(CFSs) under an axial load. Nine specimens were constructed and axial compression tests were conducted. The main experiment parameters were diameter-thickness ratio(D/t), reinforcing CFSa, and the attachment of a cushion gap between surface of steel tube and CFSs. The load-displacement curves of the specimens were obtained from the compression tests. Finally, it was concluded that the CFT column with a gap had grater ductility capacity improvement that the CFT column confined by CFSs.

The Experimental Study on Axial Loaded Concrete Filled Steel Tube Confined by Carbon Fiber Sheet (탄소섬유쉬트로 구속된 콘크리트충전 각형강관기둥의 단조압축실험)

  • Park, Jai Woo;Hong, Young Kyun;Hong, Gi Soup;Lee, Seoung Hee;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.311-320
    • /
    • 2009
  • This paper presents the experimental results of an experiment on the current rectangular CFT columns and rectangular CFT columns additionally confined by carbon fiber sheets(CFS) under axial loading. The main experimental parameters were the layer numbers of the CFS and the depth-to-thickness ratio. Nine specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, the load-axial deformation curve, the maximum axial strength, and the deformation capacity of the CFT columns and the confined CFT columns were compared. Finally, it was seen that the maximum axial strengths of the CFT increased more significantly than that of the current CFT columns because of delayed local buckling.

A Study on the Reinforcement Performance of Carbon Fiber Plate(CFP) for Demaged Reinforced Concrete Beam (손상된 철근콘크리트보에 있어서 탄소섬유판의 보강 성능에 관한 연구)

  • Kim, Cheol-Hwan;Ham, Young-Duck;Kim, Ku-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.109-115
    • /
    • 2005
  • The experimental work was performed to investigate the effect influenced to the hystresis and the flexural strength improvement of RC beam using carbon fiber plates. Major parameters of this experimental program were the section size of carbon fiber plates and the damage level of RC beam before reinforcement. Particularly, the damage level of beam is for the cases damaged by overloads. The damage level is for 30%, 60%, and 100% of flexural strength, and no damaged beams were also tested for comparison with the damaged one. from the test results, it showed that the beams reinforced by carbon fiber plates had the higher strength and lower deformation capacity than the general beams and that it had the same ductility ratio of the general beams.

  • PDF

Propellant Shelf-life Extension by Surface-modified Activated Carbon Fiber (활성탄소섬유를 이용한 추진제 저장수명 연장)

  • Yoon, Keun Sig;Lee, Young Seak;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.443-448
    • /
    • 2011
  • The propellant has a short shelf-life because of nitrogen oxides that were released from nitrocellulose decomposition. As-received and surface-modified ACFs were applied to remove the nitrogen oxides with intend to extend the shelf-life of propellant. The specific surface area of modified ACFs was slightly decreased but nitrogen function groups such as pyridine, pyridone and pyrrol were created on the surface of ACFs. As a result, the NO removal capacity of the surface-modified ACF by propellant waste increased about twice than that of the as-received ACF. The shelf-life of propellant was extended about 1.25 times by accompanying surface-modified ACF.

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with NSM and EBR CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 RC보의 휨 거동에 관한 실험 연구)

  • Lim, Dong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.601-609
    • /
    • 2008
  • The purpose of this study is to investigate the flexural strengthening effectiveness for the beams combined reinforced with NSM CFRP strips and EBR CFRP strips. To accomplish this objective, a total of nine concrete T beams were tested. From this study, it is found that the flexural stiffness and strength of the beams combined reinforced with NSM and EBR strips were significantly improved compared to the beams strengthened only with NSM CFRP strip. The maximum increase of flexural strength was 347% compared to the beam without CFRP strip. Failure of the beam combined reinforced with NSM and EBR strips (T shape) is initiated by debonding of EBR strips attached on the bottom face, and it was succeeded a part of separatio-n of NSM strips along the longitudinal direction and secondly failure of NSM strips was occurred, eventually sudden explosive failure with the separation of concrete cover in the shear region. This result shows that the NSM and EBR strips have good combination to resist applied load and the combined reinforcement with NSM and EBR strips can redistribute appropriately the total stress subjected concrete beam to the EBR and NSM strips.