• Title/Summary/Keyword: 탄소섬유복합재료

Search Result 572, Processing Time 0.035 seconds

MICROSCOPIC OBSERVATION OF DRAPED COMPOSITE MATERIALS : Bias Extension and Biaxial Tests (직물 복합재료의 드레이핑 미소 거동 관찰 : 일방향 편향 인장실험과 이축 인장실험)

  • 장승환
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • This paper aims to correlate the micro-mechanical behaviour of tow geometry with applied in-plane forces during deformation of dry woven carbon-fibre fabric. These in-plane forces lead to differences in tow reorganisation during deformation and so changes in the way in which 'lock-up' occurs. In this paper, deformation of micro-mechanical parameters such as tow interval, crimp angle, change in tow amplitude and wavelength are investigated. To observe the micro-deformation of the fabric structure, appropriate specimens from bias extension and biaxial tests are sectioned and observed under the microscope. It was found that different loading conditions cause geometric deferences in the tow architecture. The variation in deformed tow geometry with shear angle is fitted using a simple parametric model.

Nanoparticle Effect on Durability of Carbon fiber/Epoxy Composites in Saline Water Environment (염수환경에서 탄소섬유/에폭시 복합재료의 내구성에 미치는 나노입자의 영향)

  • Kim, Bu-Ahn;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-68
    • /
    • 2014
  • This study was conducted to investigate the durability of carbon fiber/epoxy composites (CFRP) in a saline water environment. The carbon fiber/epoxy composites were modified to use nanoparticles such as carbon nanotubes and titanum oxide. These hybrid composites were exposed to a saline water environment for a certain period. The weight gain according to the immersion time, a quasi-static tensile test, and micro-graphic characterization were used to investigate the samples exposed to the saline water environment. The weight gains increased with increasing immersion time. The weight gains of the hybrid composites were lower than that for pure CFRP throughout the entire immersion time. The tensile strengths decreased with increasing immersion time. The tensile strengths of the hybrid composites were higher than that of the pure CFRP throughout the entire immersion time. The pure CFRP was observed to be more degraded than the hybrid composites in the saline water environment. Therefore, it was concluded that the addition of nanoparticles to CFRP could lead to improved durability in a saline water environment.

Influence of Moisture Absorption on the Mechanical Properties in the Laminated Composites (적층형 복합재료의 기계적 성질에 미치는 수분의 영향)

  • Moon, Chang-Kwan;Choi, Hee-Lark;Lee, Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.90-99
    • /
    • 2000
  • This study has been investigated about the influence of moisture environment properties in the unidirectional and cross laminated carbon fiber/epoxy and glass fiber/epoxy composites. As a results, it was found that the weight gain of water increased with the immersion time and the mechanical properties were decreased with the weight gain of water. And it was also shown that the mechanical properties of carbon fiber/epoxy laminates were better than those of glass fiber/epoxy laminates. And a gap of the mechanical properties between the two kinds of laminates was increasing with the immersion time in distilled water of 80$^{\circ}C $. Mechanical properties which decreased by moisture absorption in the CF and GF reinforced laminates were recovered up to some extent by drying in oven at 80$^{\circ}C $ for 10 days.

  • PDF

Static Compressive Strength of Thick Unidirectional Carbon Fiber - Epoxy Laminate (두꺼운 일방향 탄소섬유-에폭시 적층판의 정적 압축 강도 연구)

  • Lee, J.;Soutis, C.;Gong, Chang-Deok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.61-65
    • /
    • 2005
  • Existing test methods for thick-section specimens ( 4mm) have not provided precise compressive properties to date for the analysis and design of thick structure. A survey of the failure behaviour of such thick specimens revealed that the failure initiated at the top corner of the specimen and propagated down and across the width of the specimen as premature failure, not typically reported for thin compression specimens. In the current study, the premature failure was successfully avoided during compressive testing and the failure mode was quite similar regardless of increasing specimen thickness and specimen volume. Failure mode was similar regardless of increasing specimen thickness and specimen volume, i.e. brooming failure mode combined with longitudinal splitting, interlaminar cracking, fibre breakage and kinkband formation (fibre microbuckling). Nevertheless, average failure strengths of the specimens decreased with increasing specimen thicnkiness from 2mm to 8mm with the T800/924C system (36% strength reduction) and specimen volumes from scaling factor I to scaling factor 4 with the IM7/8552 system (46% strength reduction). It was revealed from the literature$^{11}$ that the thickness effect and scaling effect arc caused by manufacturing defects such as void content and fibre waviness.

  • PDF

A Study on the Processing Characteristic in the Compression Molding of Hybrid Thermoplastic Composites (하이브리드 열가소성 복합재료의 압축성형에서 공정특성에 관한 연구)

  • Heo, Seok-Bong;Lee, Joong-Hee;Shin, Gwi-Su;Rhee, Kyoung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2550-2555
    • /
    • 2002
  • Hybrid composites usually are defined as composites having different types of reinforcements such as fibers and particles. The major advantage of hybrid composites is able to control the material properties such as optical, electrical, and mechanical properties. For this reason, hybrid composites are widely used in automotive, marine, household, and electrical industries. The objective of this work was to investigate processing characteristics in the compression molding of hybrid thermoplastic composites. The mechanical properties of composites manufactured in various forming conditions were monitored. The composites contained randomly oriented long carbon fiber and carbon black in polypropylene(PP) matrix were used. The carbon fiber contents of composites were 5%, 10%, 15%, and 20%, and carbon black contents were 5%, 10%, 15%, 20%, and 25% by weight. Compression molding was conducted at various mold temperatures. Crstallinity was also measured by using X-RD. The tensile modulus of the composites increased with increasing the mold temperature. However, the impact strength of the composites decreased as the mold temperature increased.

A Study on the Influence of Fiber Orientation on the Mode I Interlaminar Fracture Behavior of Carbon/Epoxy Composite materials (탄소섬유/에폭시 복합재료의 Mode I 층간파괴거동에 미치는 섬유배향각의 영향에 관한 연구)

  • 이택순;최영근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.391-401
    • /
    • 1995
  • Several tests of the Double Cantilever Beam(DCB) were carried out for influence of the fiber orientation on the Mode I of the interlaminar fracture behavior in the Carbon/Epoxy composites. The interlaminar fracture toughness of Mode I was estimated based on the energy release rate of Mode I, $G_{I}$. The fracture toughness at crack initiation, $G_{IC}$, increases from type A to type E. The fracture toughness, $G_{IR}$ , is almost constant macroscopically for type A and type E when crack propagates. $G_{IR}$ for types B, C, D increases rapidly at the beginning of the crack growth then it decreases gradually. The fracture surface observation by SEM was also obtained the same results. Consequently the influence of the fiber orientation on the Mode I Interlaminar fracture behavior was made clear.ear.

Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers (탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성)

  • 봉하동;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.

Mechanical Properties of Carbon Fiber/Nylon 6 Composite Introducing Coupling Agent (II) -Increasing Interfacial Strength of Composite- (카플링제를 도입한 탄소섬유/나일론 6 복합재료의 기계적 성질(II) -복합재료의 계면강도 증가-)

  • Park, Chan Hun;Lee, Yang Hun;Shin, Eun Joo
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 1997
  • To improve the interfacial bonding of carbon fiber-nylon 6 composite, carbon fiber(CF) were oxidized by nitric acid treatment, and two types of graft polymer(GP) of nylon 6-g-polyacrylamide (PAAm) -water dispersable GP(WDGP) and m-cresol solu ble GP(CSGP) were treated as coupling agents. Introduction of polar groups such as -COOH, -OH, etc, on the surface of the oxidized CF was confirmed by IR spectra. The stem polymer of nylon 6 in the coupling agent (GP) could be compatible with'matrix nylon 5, and the grafted branch of PAAm on GP could react to the polar groups on the oxidized CF in composite. The interfacial strength was measured by the transverse tensile test to the fiber direction for single CF embedded nylon 6 film especially prepared and by the pull-out test method. The interfacial strength of the composite reinforced with oxidized CF is greater than that reinforced with unoxidized CF. The interfacial strength of the composite was increased by treatment of coupling agents(GPs) considerably, and the increasing tendency by the WDGP is greater than that by the CSGP. The optimum conditions of coupling agent treatment are as follows: the concentration, adsorption tlme of GP, and curing temperature are 2%, 20 minutes, and $170^{\circ}$, respectively.

  • PDF

Barely Visible Impact Damage Detection Analyses of CFRP by Various NDE Techniques (다양한 비파괴 측정 방법에 의한 CFRP의 BVID 분석)

  • Lim, Hyunmin;Lee, Boyoung;Kim, Yeong K.
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • This study aims to detecting and analyzing the defects of damaged carbon fiber reinforced composites after impacts, particularly focusing on barely visible impact damages. The impact test was progressed by a drop-weight machine and applied to introduce simulated damages on laminated composites used in aircrafts. Various nondestructive testing (NDT) techniques were applied to identify the defects on the specimens with different levels of impact energies. Based on the measurements data, the levels of the barely visible impacts, and the applicability and effectiveness of the detection methods were discussed. Generally, the results demonstrated that their inner damages contained bigger footprints than those on the surfaces. However, when the damage energy was low, it was found that the inner damage size could be smaller than those appeared on the surfaces.

The Probabilistic Analysis of Fatigue Damage Accumulation Behavior Using Markov Chain Model in CFRP Composites (Markov Chain Model을 이용한 CFRP 복합재료의 피로손상누적거동에 대한 확률적 해석)

  • Kim, Do-Sik;Kim, In-Bai;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1241-1250
    • /
    • 1996
  • The characteristics of fatigue cumulative damage and fatigue life of 8-harness satin woven CFRP composites with a circular hole under constant amplitude and 2-level block loading are estimated by Stochastic Makov chain model. It is found in this study that the fatigue damage accumulation behavior is very random and the fatigue damage is accumulated as two regions under constant amplitude fatigue loading. In constant amplitude fatigue loading the predicted mean number of cycles to a specified damage state by Markov chain model shows a good agreement with the test result. The predicted distribution of the fatigue cumulative damage by Markov chain model is similar to the test result. The fatigue life predictions under 2-level block loading by Markov chain model revised are good fitted to the test result more than by 2-parameter Weibull distribution function using percent failure rule.