• Title/Summary/Keyword: 탄소섬유보강 복합재료

Search Result 56, Processing Time 0.025 seconds

An Experimental Study on the Structural Behavior of Reinforced Concrete Beam with External Adhesion of CFRP Grid (격자형 탄소섬유강화플라스틱의 외부부착 보강에 따른 철근 콘크리트 보의 구조적 거동에 관한 실험적 연구)

  • Kim, Sang-Woo;Kim, Geon-Woo;Kim, Jin-Sup
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2021
  • The study presents the ductility reinforcement effect of the RC bending member using the CFRP Grid as an experimental result. Experimental variables include a non-reinforced RC bending member (ORI), a bottom reinforced RC bending member (REB), and an RC bending member reinforced at the bottom and side (REBS). The experiment was carried out with four points bending test. As a result of the experiment, it was confirmed that the maximum bending strength increased by 17-20% through reinforcement. In addition, the ductility index calculation results confirmed that the ductility index of REB and REBS increased by 2 and 3 times, respectively, compared to the ORI.

Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite (에폭시 강화 리그닌 기반 나노탄소섬유 복합재료의 특성)

  • Youe, Won-Jae;Lee, Soo-Min;Lee, Sung-Suk;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.406-414
    • /
    • 2016
  • The lignin-based carbon nanofiber reinforced epoxy composite has been prepared by immersing carbon nanofiber mat in epoxy resin solution in order to evaluate the physical and mechanical properties. The thermal and mechanical properties of the carbon nanofiber reinforced epoxy composite were analyzed using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and tensile tester. It was found that the thermal properties of the carbon nanofiber reinforced epoxy composite improved, with its glass-transition temperature ($T_g$) increased from $90.7^{\circ}C$ ($T_g$ of epoxy resin itself) to $106.9^{\circ}C$. The tensile strengths of carbon nanofiber mats made from both lignin-g-PAN copolymer and PAN were 7.2 MPa and 9.4 MPa, respectively. The resulting tensile strength of lignin-based carbon nanofiber reinforced epoxy composite became 43.0 MPa, the six times higher than that of lignin-based carbon nanofiber mats. The carbon nanofibers were pulled out after the tensile test of the carbon nanofiber reinforced epoxy composite due to high tensile strength (478.8 MPa) of an individual carbon nanofiber itself as well as low interfacial adhesion between fibers and matrices, confirmed by the SEM analysis.

An Estimate of Flexural Strength for Reinforce Concrete Beams Strengthened with CFRP Sheets (탄소섬유쉬트에 의해 휨보강된 RC보의 휨강도 추정)

  • Park Jong-Sup;Jung Woo-Tai;You Young-Jun;Park Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.213-220
    • /
    • 2005
  • Carbon fiber reinforced polymer (CFRP) sheets are becoming increasingly popular for strengthening deteriorated concrete bridges due to their excellent strength and stiffness-to-weight ratio, corrosion resistance, and convenience of construction work. The purpose of this study is to compare the performance of CFRP-strengthened reinforced concrete (RC) beams and to develop a new design formula. Simple beams with 3 m span length were tested to investigate the effect of reinforcing steel ratio and CFRP-reinforcing ratio on the flexural behavior of strengthened RC beams. The test results were analyzed with the special emphasis on the failure mode, the maximum load, and the strain distribution in the section. It is shown that the strain of the strengthened beams is not linearly distributed in the section. A new design formula based on the non-linear distribution of the strain has been derived and showed that it has a good agreement with the various domestic and foreign test results.

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites (열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구)

  • Baek, Un-Gyeong;Nam, Gibeop;Roh, Jae-Seung;Park, Sung-Eun;Roh, Jeong-U
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.136-142
    • /
    • 2021
  • 3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.

Study on PAN-based carbon fibers containing cellulose treated with flame retardant (난연 처리한 셀룰로오스가 첨가된 PAN계 탄소섬유의 특성 연구)

  • Yang, Jee-Woo;Yu, Jae-Jeong;Yong, Da-Kyung;Chung, Yong-Sik;Lee, Seung-Goo
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.75-75
    • /
    • 2012
  • 탄소섬유는 전구체의 종류에 따라 PAN계, 피치계 그리고 레이온계로 나뉘며 최종 탄소섬유의 특성에도 차이가 있는 것으로 알려져 있다. 최근에는 PAN계 탄소섬유가 세계 시장의 대부분을 차지하고 있으며, PAN계 탄소섬유의 초경량, 고강도, 고탄성, 내약품성 그리고 열안정성 등의 우수한 특성으로 최첨단 고기능성 제품의 복합재로 많이 이용되고 있다. 그러나 탄소섬유가 가지고 있는 높은 열전도성은 적용에 따라 단점으로 작용될 수도 있다. 예를 들면, 로켓 엔진의 노즐이나 원자로의 구조물 그리고 극한조건용 구조재료 등, 고강도 단열특성을 요하는 최첨단 복합재로 응용 범위를 넓히는데 한계로 작용한다. 레이온은 최초의 탄소섬유 전구체였으나 공정상 경제성이 떨어지는 이유로, 지금은 고탄성을 요구하는 특수 목적으로만 소량 생산되고 있다. 레이온의 주원료는 셀룰로오스이며 셀룰로오스는 지구상에서 가장 흔한 재료이므로 오늘날 셀룰로오스를 보강재로 이용하려는 연구가 활발히 진행되고 있다. 본 연구에서는 탄소섬유의 열전도도를 낮추기 위한 방법으로 안정화셀룰로오스를 첨가한 PAN용액을 출발물질로 탄소섬유를 제조하고 특성 연구를 진행하였다. PAN용액에 셀룰로오스의 분산성을 향상시키기 위해 셀룰로오스를 열처리하였다. 이 과정에서 얻어진 안정화 셀룰로오스의 수율을 높이기 위해 셀룰로오스를 난연 처리하였으며, 그 결과 안정화셀룰로오스의 수율을 향상시킬 수 있었다. 안정화셀룰로오스를 첨가시킨 PAN계 탄소섬유의 물리적, 기계적 그리고 열적 특성을 SEM, XRD, 만능 인장시험기, TGA 그리고 Laser Flash Method 등을 통해 주요 특성 및 변화를 관찰한 결과, 순수한 PAN계 탄소섬유의 특성과 유사한 결과를 얻었다. 향후 몇 가지 공정상의 문제점을 개선한다면 흥미로운 결과를 기대할 수 있을 것으로 본다.

  • PDF

On the Structural Strength of Composite Blade for Offshore Wind Turbine by using the Aluminum Foam (발포 알루미늄을 이용한 해상풍력 블레이드 복합재의 구조강도 연구)

  • Na, S.S.;Song, H.C;Shim, C.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.187-187
    • /
    • 2010
  • 최근 해상풍력 블레이드가 대형화됨에 따라 보다 가볍고 강한 재료가 요구되고 있다. 현재 주로 사용되고 있는 복합재는 발사우드나 PVC 폼 등을 코어소재로 하고, 유리섬유나 탄소섬유 등을 보강섬유로 사용하고 있다. 본 연구에서는 현재 사용되고 있는 복합재에 대한 특성을 알아보고, 최근 흡음, 충격 및 열에 강한 발포 알루미늄을 이용한 복합재를 해상풍력 블레이드 제조에 적용하여, 구조 강도 실험을 실시함으로써 기존 복합재와 구조 강도 및 비용 등을 비교 검토하여 우수한 복합재를 제시하고자 한다. 이를 위해 대형구조물인 블레이드를 제작하기 위해 적절한 크기의 발포 알루미늄을 상호 접합하기 위한 방법을 연구하고자 하며, 목포대학교에서 보유중인 만능재료시험기(100 Ton)를 활용하여 인장, 압축, 굽힘 실험을 실시하고, 스킨재 변화, 코어재의 밀도와 두께 변화를 고려하여 다양한 복합재의 강도를 비교하고자 한다. 또한, 기존에 사용되고 있는 복합재와 발포 알루미늄을 이용한 복합재의 재료비 및 가공비를 추정하고 경제적인 복합재를 제시하고자 한다.

  • PDF

Evaluation and Modification of Tensile Properties of Carbon Fiber Reinforced Polymer(CFRP) as Brittle Material with Probability Distribution (확률분포를 이용한 취성재료 특성의 탄소섬유보강폴리머 인장물성평가 및 보정)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • Carbon Fiber Reinforced Polymers(CFRP) has widely utilized as a material for rehabilitation because of its light-weight, deformability and workability. Because CFRP is brittle material whereas steel is ductile, it is inappropriate to apply conventional design approach for steel reinforcement. For ductile material, the behavior of combined elements is on average of that of unit element due to the stress redistribution between elements after yielding. Therefore, the mean value of the stress of combined elements is equal to that of unit element and the standard variation is smaller. Therefore, although the design value can increase, it is used as constant value because it is conservative and practical approach. However, for brittle material, the behavior of combined elements is governed by the weaker element because no stress redistribution is expected. Therefore, both the mean value and standard variation of the stress of combined elements decreases. For this reason, the design value would decrease as the number of element increases although it is eventually converged. In this paper, in brittle material, it is verified that the combination of unit element with normal distribution results in combined element with weibull distribution, so the modifying equation of mechanical properties is proposed with respect to the area load applied.

Effects of fiber forms on thermal anisotropy in fibrous composites (섬유강화 복합재의 열이방성에 대한 섬유 형태적 영향)

  • Sim, Hwan-Bo;Lee, Bo-Seong
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.215-222
    • /
    • 1995
  • Anisotropic pitch-based C-type and hollow carbon fibers can obtain wider shear stresses during the spinning and induce higher molecular orientation than that of round along the fiber axis. These fibers reinforced unidirectional epoxy composites were prepared by hot-press moulding method and perpendicular and parallel thermal conductivities of the composites were measured by a steady-state meth od. In the case of round carbon fibers reinforced epoxy composites(H-CF/EP), thermal anisotropic factor showed nearly 50, while those of H-CF/EP and C-CF/EP showed about 130 and 118, respectively. As a result, both H-CF/EP and C-CF/EP had an excellent directional thermal conductivity to distribute heat, above 200 %.

  • PDF

Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites (불연속 탄소섬유-에폭시 복합재의 발열성능 평가)

  • Kim, Myungsoo;Kong, Kyungil;Kim, Nari;Park, Hyung Wook;Park, Ounyoung;Park, Young-Bin;Jung, Mooyoung;Lee, Sang Hwan;Kim, Su Gi
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2013
  • This study explores the resistive heating characteristics of discontinuous carbon fiber (CF)-epoxy composites. Test samples including 1, 3, and 5 wt.% CF were fabricated using sonication and cast molding processes. For heating performance characterization, DC currents were applied to the composite samples, and surface temperatures were evaluated visually and quantitatively using an infrared camera. To estimate the thermal performance of composites and verify the experimental results, finite element analyses were performed. The resistive heating mechanism was investigated in connection with CF loading and applied voltages. Resistive heating efficiency increased proportionately with CF concentration and applied voltage. To obtain homogeneous temperature distribution of the samples, high degree of CF dispersion is required.

Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1) (산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1))

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.141-152
    • /
    • 1994
  • The results of an experimental study on the development and the evaluation of lightweight and high strength composites utilizing by-products and calcium silicates for construction materials are presented in this paper. The composites using early strength portland cement, by-Products( f1y ash, silica fume), silica powder, quick lime, gypsum, A1 powder and fibers(PAN-derived CF, alkali-resistance GF) were prepared using various mixing conditions. As the test results show, PAN-derived CF and alkali-resistance GF were suitable for rein-forcing fiber of the composites. And the mechanical properties,such as compressive tensile flexural strength, and toughness of Lt. Wt. fiber reinforced calcium silicates cement comp-osites were improved by increasing the fly ash and silica fume contents, and fiber contents, especially by increasing fiber contents the toughness of the composites were remarkably in-creased. Also, compressive tensile flexural strength,and toughness of the composites rein-forcing PAN-derived CF were higher than those of the composites reinforcing alkali-resistance GF..