• Title/Summary/Keyword: 탄성 회복

Search Result 217, Processing Time 0.058 seconds

A Study on Optimal Shape of Stent by Finite Element Analysis (유한요소 해석을 이용한 스텐트 최적형상 설계)

  • Lee, Tae-Hyun;Yang, Chulho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.1-6
    • /
    • 2017
  • Stents are widely used as the most common method of treating coronary artery disease with implants in the form of a metal mesh. The blood flow is normalized by inserting a stent into the narrowed or clogged areas of the human body. In this study, the mechanical characteristics of a stent are investigated according to the variations of its design parameters by the Taguchi method and finite element analysis. A stent model of the Palmaz-Schatz type was used for the analysis. In the analysis, an elasto-plastic material model was adopted for the stent and a hyper-elastic model was used for the balloon. The main interest of this study is to investigate the effects of the design parameters which reduce the possibility of restenosis by adjusting the recoil amount. A Taguchi orthogonal array was constructed on the model of the stent. The thickness and length and angle of the slot were selected as the design parameters. The amounts of radial recoil and longitudinal recoil were calculated by finite element analysis. The statistical analysis using the Taguchi method showed that optimizing the shape of the stent could reduce the possibility of restenosis. The optimized shape showed improvements of recoil in the radial and longitudinal directions of ~1% and ~0.1%, respectively, compared to the default model.

Determination of Elastic Recovery for Axi-Symmetric Forged Products (축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

Effect of Stress-Dependent Modulus and Poisson's Ratio on Rutting Prediction in Unbound Pavement Foundations (도로기초의 Rutting 예측에 미치는 응력의존 탄성계수와 포와송비의 영향)

  • Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.15-24
    • /
    • 2007
  • This paper will present a simple approach (or predicting layer deformation of unbound pavement materials with stress-dependent material properties. The approach is based on an uncoupled formulation in which the resilient and deformation response of unbound materials are considered separately. As a result, an uncoupled approach incorporating a resilient stiffness and Poisson's ratio model is able to simulate field measured deformation in pavement foundations. In addition, a sensitivity analysis is conducted to identify the significant factors in the stress-dependent modulus and Poison's ratio model. The predicted trends of deformation from this analysis are presented and discussed.

Evaluation of BSF Layer Formation Ability by the Rheological Control (레올로지 조절에 따른 BSF층 형성 능력 평가)

  • Yang, Seung Jin;Lee, Jung Woong;Park, Ki Bum;Yun, Mi Kyoung;Park, Seong Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.101.2-101.2
    • /
    • 2010
  • 태양전지에서 고효율을 얻기 위해서는 알루미늄 원자의 확산에 의한 불순물층으로서 p+층이 필수적이다. P+층은 형성전자의 재결합을 방지하고, 생성 캐리어의 수집 효율을 향상시키는 BSF(Back Surface Field) 효과의 역할을 한다. 도포된 알루미늄 페이스트가 부족할 경우 BSF효과가 나타나지 않으며 과할 경우 웨이퍼가 휨이 발생하여 최적 인쇄도포량이 중요하다. 본 연구에서는 레오미터 측정조건을 스크린 프린팅 인쇄 조건과 유사하게 진행하여 저장탄성율(G') 과 손실탄성율(G")의 관계를 살펴보았다. 회복단계에서 G'>G" 이고 Cross point가 없을 경우 도포량이 1.8g 이상이였으며, 웨이퍼의 휨(bowing)이 크게 발생하였고, 이와 반대로 회복시 20초 후에 Cross point가 나타난 경우 10% 정도 도포량 감소와 함께 휨 발생도 1 mm 이하로 양호한 특성을 확인할 수 있었다.

  • PDF

The Resilient Characteristics of Typical Subgrade Soils in Korea (우리나라 대표적 노상토의 회복탄성 특성)

  • 조천환;우제윤
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.15-32
    • /
    • 1991
  • Recently, the rational methods of pavement design and analysis using the resilient modulus, MR, as fundamental input material property have been increasingly adopted in major advanced countries. Since the development of 1986 AASHTO Guide for Design of Pavement Structures, many researches concerning the resilient characteristics of various pavement materials as well . as development of reliable testing methods have been actively performed. Anticipating the use of Mn-based pavement design and analysis such as resilient characteristics and Mn - CBR relat - ionship of domestic subgrade soils were performed including development of a standard MR test procedure suitable for subgrade soils in our country.

  • PDF

Experimental Performance Characteristics of Crumb Rubber-Modified(CRM) Asphalt Concrete (폐타이어활용 아스팔트 콘크리트의 실험적 공용특성)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.89-97
    • /
    • 2003
  • Indirect tensile strength(IDT) test and resilient modulus(Mr) test were performed to evaluate experimental performance characteristics for the conventional and crumb rubber-modified(CRM) asphalt concrete using dry and wet processes asphalt. The IDT test was conducted under three temperatures(5, 10, 20$^{\circ}C$). According to the test results, it was shown that indirect tensile strength of CRM asphalt concrete was lower than that of the conventional one. However, toughness and maximum vortical strain of the CRM asphalt concrete were higher than those of the conventional one. The results of Mr test were presented that Mr of CRM asphalt concrete was higher than that of the conventional one. In addition, it was revealed that the overall laboratory performance characteristics of the wet-processed CRM asphalt concrete was better than those of the dry-processed one.