• Title/Summary/Keyword: 탄성파 속성법

Search Result 6, Processing Time 0.023 seconds

Global Trends of Marine Petroleum Exploration Science Information (해저 석유탐사 학술정보 분석)

  • Kil, Sang Cheol;Park, Kwan Soon;Cho, Jin Dong
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.673-681
    • /
    • 2014
  • Recently, many countries in the world try to develop alternative energy sources, however, traditional hydrocarbon resources are still occupying most of the energy resources. Exploration demands for high technologies are increasing in the development of limited oil & gas resources field owing to the exhaustion of hydrocarbon resources for access area. Therefore, an effort for the development and the application of new technologies such as azimuth seismic survey, ocean-bottom seismic survey and marine controlled-source electromagnetic survey is necessary as well as an understanding of the existing technologies such as 2D/3D seismic survey. This dissertation is designed with the purpose of introducing marine hydrocarbon exploration technologies and analyzing their internalexternal researches, development and science information. In this study, we analised total 616 dissertations for the marine petroleum exploration released in the Sci-expanded DB of 'web of science' during the 2001~2014 periods.

3-D Visualization of Reservoir Characteristics through GOCAD (GOCAD를 이용한 저류층 속성정보의 3차원 시각화 연구)

  • Gwak Sang-Hwan;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.80-83
    • /
    • 2001
  • Four seismic reflection horizons in 3-D seismic data, coherence derived from the seismic data, and 38 well logs from the Boonsville Gas Filed in Texas were tried to be integrated and visualized in 3 dimensions. Time surface was constructed from pick times of the reflection horizons. Average velocities to each horizon at 38 well locations were calculated based on depth markers from the well logs and time picks from the 3-D seismic data. The time surface was transformed to depth surface through velocity interpolation. Coherence was calculated on the 3-D seismic data by semblance method. Spatial distribution of the coherence is captured easily in 3-D visualization. Comparing to a time-slice of seismic data, distinctive stratigraphic features could be correctly recognized on the 3-D visualization.

  • PDF

Q-factor Estimation of Seismic Trace Including Random Noise using Peak Frequency-Shift Method (무작위 잡음이 포함된 탄성파 트레이스로부터 Peak Frequency-Shift 방법을 이용한 Q-factor 추정)

  • Kwon, Junseok;Chung, Wookeen;Ha, Jiho;Shin, Sungryul
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.54-60
    • /
    • 2018
  • The data acquired from seismic exploration can be used to detect the existence of oil and gas resources through appropriate processing and interpretation. The seismic attributes indicating the existence of resources are extracted from amplitude information, where the Q-factor representing intrinsic attenuation plays an useful role of hydrocarbon indicator. So, the accuracy of Q-factor estimation is very important to investigate the existence of resources. In this study, we calculated the Q-factor and analyzed the error rate through a numerical example. To mimic real data, random noise was added to the synthetic data. With the noise-added data, the Q-factor was estimated and the error rate was analyzed by using the spectral ratio method (SRM) and peak frequency shift method (PFSM). Both methods provided a relatively accurate Q-factor when the signal-to-noise ratio was 90 dB. However, the peak frequency shift method (PFSM) produced better results than the spectral ratio method (SRM) as the level of random noise increased.

Introduction to Useful Attributes for the Interpretation of GPR Data and an Analysis on Past Cases (GPR 자료 해석에 유용한 속성들 소개 및 적용 사례 분석)

  • Yu, Huieun;Joung, In Seok;Lim, Bosung;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.113-130
    • /
    • 2021
  • Recently, ground-penetrating radar (GPR) surveys have been actively employed to obtain a large amount of data on occurrences such as ground subsidence and road safety. However, considering the cost and time efficiency, more intuitive and accurate interpretation methods are required, as interpreting a whole survey data set is a cost-intensive process. For this purpose, GPR data can be subjected to attribute analysis, which allows quantitative interpretation. Among the seismic attributes that have been widely used in the field of exploration, complex trace analysis and similarity are the most suitable methods for analyzing GPR data. Further, recently proposed attributes such as edge detecting and texture attributes are also effective for GPR data analysis because of the advances in image processing. In this paper, as a reference for research on the attribute analysis of GPR data, we introduce the useful attributes for GPR data and describe their concepts. Further, we present an analysis of the interpretation methods based on the attribute analysis and past cases.

Correlation interpretation for surface-geophysical exploration data-Chojeong Area, Chungbuk (지표물리탐사 자료의 상관해석-충북 초정지역)

  • Gwon, Il Ryong;Kim, Ji Su;Kim, Gyeong Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.75-88
    • /
    • 1999
  • A recent major subject of geophysical exploration is research into 3-D subsurface imaging with a composite information from the various geophysical data. In an attempt to interpret Schlumberger sounding data for the study area in 2-D and 3-D view, resistivity imaging was firstly performed and then pseudo-3-D resistivity volume was reconstructed by interpolating several 1-D resistivity plots. Electrical resistivity discontinuities such as fracture zone were successfully clarified in pseudo-3-D resistivity volume. The low resistivity zone mainly associated with fracture zone appears to develop down to granitic basement in the central part of the study area. Seismic velocity near the lineament is estimated to be approximately as small as 3,000 m/s, and weathering-layer for the southeastern part is interpreted to be deeper than for the northwestern part. Geophysical attributes such as electrical resistivity, seismic velocity, radioactivity for the Chojeong Area were analysed by utilizing a GIS software Arc/Info. The major fault boundaries and fracture zones were resolved through image enhancement of composite section (electrical resistivity and seismic refraction data) and were interpreted to develop in the southeastern part of the area, as characterized by low electrical resistivity and low seismic velocity. However, radioactivity attribute was found to be less sensitive to geological discontinuities, compared to resistivity and seismic velocity attributes.

  • PDF

Crossplot Interpretation of Electrical Resistivity and Seismic Velocity Values for Mapping Weak Zones in Levees (제방의 취약구간 파악을 위한 전기비저항과 탄성파속도의 교차출력 해석)

  • Cho, Kyoung-Seo;Kim, Jeong-In;Kim, Jong-Woo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.507-522
    • /
    • 2021
  • Specific survey objectives often cannot be met using only one geophysical method, as each method's results are influenced by the specific physical properties of subsurface materials. In particular, areas susceptible to geological hazards require investigation using more than one method in order to reduce risks to life and property. Instead of analyzing the results from each method separately, this work develops a four-quadrant criterion for classifying areas of levees as safe or weak. The assessment is based on statistically determined thresholds of seismic velocity (P-wave velocity from seismic refraction and S-wave velocity from multichannel analysis of surface waves) and electrical resistivity. Thresholds are determined by subtracting the standard deviation from the mean during performance testing of this correlation technique applied to model data of four horizontal and inclined fracture zones. Compared with results from the crossplot of resistivity and P-wave velocity, crossplot analysis using resistivity and S-wave velocity data provides more reliable information on the soil type, ground stiffness, and lithological characteristics of the levee system. A loose and sandy zone (represented by low S-wave velocity and high resistivity) falling within the second quadrant is interpreted to be a weak zone. This interpretation is well supported by the N values from standard penetrating test for the central core.