• Title/Summary/Keyword: 탄성파 모델링

Search Result 107, Processing Time 0.028 seconds

Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning (머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거)

  • Nam, Ho-Soo;Lim, Bo-Sung;Kweon, Il-Ryong;Kim, Ji-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.168-177
    • /
    • 2020
  • Seabed multiple reflections (seabed multiples) are the main cause of misinterpretations of primary reflections in both shot gathers and stack sections. Accordingly, seabed multiples need to be suppressed throughout data processing. Conventional model-driven methods, such as prediction-error deconvolution, Radon filtering, and data-driven methods, such as the surface-related multiple elimination technique, have been used to attenuate multiple reflections. However, the vast majority of processing workflows require time-consuming steps when testing and selecting the processing parameters in addition to computational power and skilled data-processing techniques. To attenuate seabed multiples in seismic reflection data, input gathers with seabed multiples and label gathers without seabed multiples were generated via numerical modeling using the Marmousi2 velocity structure. The training data consisted of normal-moveout-corrected common midpoint gathers fed into a U-Net neural network. The well-trained model was found to effectively attenuate the seabed multiples according to the image similarity between the prediction result and the target data, and demonstrated good applicability to field data.

Synthetic Training Data Generation for Fault Detection Based on Deep Learning (딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.89-97
    • /
    • 2021
  • Fault detection in seismic data is well suited to the application of machine learning algorithms. Accordingly, various machine learning techniques are being developed. In recent studies, machine learning models, which utilize synthetic data, are the particular focus when training with deep learning. The use of synthetic training data has many advantages; Securing massive data for training becomes easy and generating exact fault labels is possible with the help of synthetic training data. To interpret real data with the model trained by synthetic data, the synthetic data used for training should be geologically realistic. In this study, we introduce a method to generate realistic synthetic seismic data. Initially, reflectivity models are generated to include realistic fault structures, and then, a one-way wave equation is applied to efficiently generate seismic stack sections. Next, a migration algorithm is used to remove diffraction artifacts and random noise is added to mimic actual field data. A convolutional neural network model based on the U-Net structure is used to verify the generated synthetic data set. From the results of the experiment, we confirm that realistic synthetic data effectively creates a deep learning model that can be applied to field data.

Modeling of Multi-Boom Floating Crane for Lifting Analysis of Offshore Wind Turbine (해상 풍력 발전기 리프팅 해석을 위한 해상 크레인 멀티 붐 모델링)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • The dynamic responses of a 5 MW wind turbine lifted by a floating crane with two elastic booms are analyzed. Dynamic equations of motions of a multibody system that consists of a floating crane, two elastic booms, and a wind turbine are derived. The six-degree-of-freedom (DOF) motions for the floating crane and the wind turbine are considered in the equations of motions. The hydrostatic force, the hydrodynamic force due to a regular wave, the mooring force, the wire rope force, and the gravitational force are considered as external forces. By solving the equations numerically, the dynamic responses of cargo are simulated. The simulation results are compared with those in the case of one elastic boom. Finally, the dynamic responses of the wind turbine lifted by the floating crane are analyzed under regular wave condition.

Effect of Notch Geometries on Dynamic Stress Concentration Factor (노치 선단(균열 주위)의 기하학적 형상이 동적 응력집중계수(동적균열전파)에 미치는 영향)

  • O.S. Lee;H.S. Jeon;K.H. Byun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.46-54
    • /
    • 1998
  • In this paper, the erect of notch geometries on dynamic stress concentration was investigated by using the dynamic photoelasticity and the drop weight loading system Dynamic stress fields arisen by elastic wave through the loading system around various types of notch geometries were captured by using $10^6/sec$ frame rate Cranz-Shardin camera system with 12 photographic frames. We found that dynamic stress concentrations around the notch tip and comer were highly dependent on the change in notch geometries. The elders of dynamic stress singularity ware determined with respect to varying geometries of notches and we explained dynamic stress concentration in terms of the orders of dynamic stress singularity.

  • PDF

Analysis of the Basement Structure of Noeun Waste Landfill Site Using a Refracted Elastic Wave Tomography Survey (탄성파 굴절법 토모그래피 방법을 이용한 노은 폐기물 매립장의 지반 구조 분석)

  • Kim, Jun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.425-432
    • /
    • 2006
  • A seismic tomography using refraction waves is applied to provide information on depth of basement rocks and leachate distribution of the Noeun waste landfill site for the stage of preliminary environmental survey. This method is generally applied to civil and environmental areas. Three lines, apparently perpendicular to the potential leachate flow direction in this site, were installed to investigate the waste landfill site in pseudo three dimensional geometry. The results show that the site is composed of 3 layers and depth of basement becomes shallower at the upstream area of the landfill site than that of the downstream area. Moreover, some parts of the second layer and the basement at the down stream area are partially infiltrated by the leachate, probably related to the disturbed distribution of the different velocity materials within the second layer. In Conclusion, refraction wave tomography is found to be one of the most efficient way to investigate waste landfill site.

Seismic properties of Gas Hydrate using Modeling Technique (모델링 기술을 이용한 심해 Gas Hydrate의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Kim, Young-Jun;Park, Keun-Pil;Lee, Ho-Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.156-157
    • /
    • 2005
  • Gas hydrate is ice-like crystalline lattice, formed at appropriate temperature and pressure, in which gas molecules are trapped. It is worldwide popular interesting subject as a potential energy. In korea, a seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. In this paper, we had conducted numerical and physical modeling experiments for seismic properties on gas hydrate with field data which had been acquired over the East sea in 1998. We used a finite difference seismic method with staggered grid for 2-D elastic wave equation to generate synthetic seismograms from multi-channel surface seismic survey, OBC(Ocean Bottom Cable) and VSP(Vertical Seismic Profiling). We developed the seismic physical modeling system which is simulated in the deep sea conditions and acquired the physical model data to the various source-receiver geometry. We carried out seismic complex analysis with the obtained data. In numerical and physical modeling data, we observed the phase reversal phenomenon of reflection wave at interface between the gas hydrate and free gas. In seismic physical modeling, seismic properties of the modeling material agree with the seismic velocity estimated from the travel time of reflection events. We could easily find out AVO(Amplitude Versus Offset) in the reflection strength profile through seismic complex analysis.

  • PDF

Construction the pseudo-Hessian matrix in Gauss-Newton Method and Seismic Waveform Inversion (Gauss-Newton 방법에서의 유사 Hessian 행렬의 구축과 이를 이용한 파형역산)

  • Ha, Tae-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.191-196
    • /
    • 2004
  • Seismic waveform inversion can be solved by using the classical Gauss-Newton method, which needs to construct the huge Hessian by the directly computed Jacobian. The property of Hessian mainly depends upon a source and receiver aperture, a velocity model, an illumination Bone and a frequency content of source wavelet. In this paper, we try to invert the Marmousi seismic data by controlling the huge Hessian appearing in the Gauss-Newton method. Wemake the two kinds of he approximate Hessian. One is the banded Hessian and the other is the approximate Hessian with automatic gain function. One is that the 1st updated velocity model from the banded Hessian is nearly the same of the result from the full approximate Hessian. The other is that the stability using the automatic gain function is more improved than that without automatic gain control.

Random heterogeneous model with bimodal velocity distribution for Methane Hydrate exploration (바이모달 분포형태 랜덤 불균질 매질에 의한 메탄하이드레이트층 모델화)

  • Kamei Rie;Hato Masami;Matsuoka Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • We have developed a random heterogeneous velocity model with bimodal distribution in methane hydrate-bearing Bones. The P-wave well-log data have a von Karman type autocorrelation function and non-Gaussian distribution. The velocity histogram has two peaks separated by several hundred metres per second. A random heterogeneous medium with bimodal distribution is generated by mapping of a medium with a Gaussian probability distribution, yielded by the normal spectral-based generation method. By using an ellipsoidal autocorrelation function, the random medium also incorporates anisotropy of autocorrelation lengths. A simulated P-wave velocity log reproduces well the features of the field data. This model is applied to two simulations of elastic wane propagation. Synthetic reflection sections with source signals in two different frequency bands imply that the velocity fluctuation of the random model with bimodal distribution causes the frequency dependence of the Bottom Simulating Reflector (BSR) by affecting wave field scattering. A synthetic cross-well section suggests that the strong attenuation observed in field data might be caused by the extrinsic attenuation in scattering. We conclude that random heterogeneity with bimodal distribution is a key issue in modelling hydrate-bearing Bones, and that it can explain the frequency dependence and scattering observed in seismic sections in such areas.

Geophysical Investigations of the Grenville Front in Ohio, USA (미국 오하이오주에 위치하는 그랜빌 프런트의 지구물리학적 연구)

  • Don Sunwoo;Hinze William J.;Kim Jeong Woo
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.285-297
    • /
    • 2005
  • Seismic reflection profile analysis, potential field analysis, and potential field modeling using deep seismic reflection, gravity, magnetic, and geological data were performed to better understand the location and nature of the Grenville Front in Ohio, USA. The seismic reflection profile reveals a broad zone of east dipping basement reflectors associated with the Grenville Front in western Ohio and a broad region of west dipping reflectors cutting through the entire crust in eastern Ohio. Potential field analysis indicates that the Grenville Front is characterized by a gravity low, an associated gravity positive and a magnetic high. The results of the gravity and magnetic modeling using seismic data suggest that the lower crust is thickened at the interpreted position of the Grenville Front and high grade metamorphic rocks make up the Grenville Front Tectonic Zone (GFTZ). The gravity low at the Grenville Front is due to the thickened crust, while the magnetic high is due to high grade metamorphic rocks. The gravity high immediately east of the GFTZ in central Ohio is caused by thrusting of high density lower and middle crustal rocks into the upper crust. There is no compelling evidence that this gravity high is related to a Precambrian rift zone as has been suggested in previous studies.

Geoacoustic characteristics of Quaternary stratigraphic sequences in the mid-eastern Yellow Sea (황해 중동부 제4기 퇴적층의 지음향 특성)

  • Jin, Jae-Hwa;Jang, Seong-Hyeong;Kim, Seong-Pil;Kim, Hyeon-Tae;Lee, Chi-Won;Chang, Jeong-Hae;Choi, Jin-Hyeok;Ryang, Woo-Heon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 2001
  • According to analyses of high-resolution seismic profiles (air gun, sparker, and SBP) and a deep-drill core(YSDP 105) in the mid-eastern Yellow Sea, stratigraphic and geoacoustic models have been established and seismo-acoustic modeling has been fulfilled using ray tracing of finite element method. Stratigraphic model reflects seismo-, litho-, and chrono-stratigraphic sequences formed under a significant influence of Quaternary glacio-eustatic sea-level fluctuations. Each sequence consists of terrestrial to very-shallow-marine coarse-grained lowstand systems tract and tidal fine-grained transgressive to highstand systems tract. Based on mean grain-size data (121 samples) of the drill core, bulk density and P-wave velocity of depositional units have been inferred and extrapolated down to a depth of the recovery using the Hamilton's regression equations. As goo-acoustic parameters, the 121 pairs of bulk density and P-wave velocity have been averaged on each unit of the stratigraphic model. As a result of computer ray-tracing simulation of the subsurface strata, we have found that there are complex ray paths and many acoustic-shadow zones owing to the presence of irregular layer boundaries and low-velocity layers.

  • PDF