• Title/Summary/Keyword: 탄성파자료

Search Result 44, Processing Time 0.018 seconds

Stratigraphy and Paleoenvironment of Domi-1 and Sora-1 Wells, Domi Basin (도미분지 도미-1, 소라-1공의 층서와 고환경)

  • Yun, Hye-Su;Byun, Hyun-Suk;Oh, Jin-Yong;Park, Myong-Ho;Lee, Min-Woo
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.407-429
    • /
    • 2012
  • There has been much debates on the geologic age of the sediments of the Domi Basin, since age results varied after research methods and fossil groups. This study carried out palynological analysis and seismic interpretation to establish a stratigraphy and environmental reconstruction mainly based on fossil dinoflagellates and Seismic data from the Domi-1 and Sora-1 wells. The dinocyst assemblages found enabled zonation of the well sediment sequence resulting in 4 ecozones. Index fossils among dinocysts and palynomorphic substances indicate geologic age of the well ranges from Eocene to Pleistocene, and paleoenvironment varies from freshwater to inner-neritic marine. The fossil association also suggests strong relationship to Japanese Tertiary basins in Kyushu area in terms of stratigraphy and basin developmental history.

Baseline Survey Seismic Attribute Analysis for CO2 Monitoring on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 CCS 프로젝트의 이산화탄소 모니터링을 위한 Baseline 탄성파 속성분석)

  • Cheong, Snons;Kim, Byoung-Yeop;Bae, Jaeyu
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.485-494
    • /
    • 2013
  • $CO_2$ Monitoring, Mitigation and Verification (MMV) is the essential part in the Carbon Capture and Storage (CCS) project in order to assure the storage permanence economically and environmentally. In large-scale CCS projects in the world, the seismic time-lapse survey is a key technology for monitoring the behavior of injected $CO_2$. In this study, we developed a basic process procedure for 3-D seismic baseline data from the Aquistore project, Estevan, Canada. Major target formations of Aquistore CCS project are the Winnipeg and the Deadwood sandstone formations located between 1,800 and 1,900 ms in traveltime. The analysis of trace energy and similarity attributes of seismic data followed by spectral decomposition are carried out for the characterization of $CO_2$ injection zone. High trace energies are concentrated in the northern part of the survey area at 1,800 ms and in the southern part at 1,850 ms in traveltime. The sandstone dominant regions are well recognized with high reflectivity by the trace energy analysis. Similarity attributes show two structural discontinuities trending the NW-SE direction at the target depth. Spectral decomposition of 5, 20 and 40 Hz frequency contents discriminated the successive E-W depositional events at the center of the research area. Additional noise rejection and stratigraphic interpretation on the baseline data followed by applying appropriate imaging technique will be helpful to investigate the differences between baseline data and multi-vintage monitor data.

The Structural and Stratigraphic Evolution of Lake Tanganyika (아프리카 탕가니카호수의 구조 및 층서 진화 연구)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.67-77
    • /
    • 1997
  • Seismic data from Lake Tanganyika indicate a complex tectonic, structural, and stratigraphic history. The Lake Tanganyika rift consists of half grabens which tend to alternate dip-direction along the strike of the rift. Adjacent half-grabens are separated by distinct accommodation zones of strike-slip motion. These are areas of relatively high basement, and are classified into two distinct forms which depend on the map-view geometry of the border faults on either side of the accommodation zone. One type is the high-relief accommodation zone which is a fault bounded area of high basement with little subsidence or sediment accumulation. These high-relief areas probably formed very early in the rifting process. The second type is the low-relief accommodation zone which is a large, faulted anticlinal warp with considerable rift sediment accumulated over its axis. These low-relief features continue to develop as rifting processes. This structural configuration profoundly influences depositional processes in Lake Tanganyika. Not only does structures dictate where discrete basins and depocenters can exist, it also controls the distribution of sedimentary facies within basins, both in space and time. This is because rift shoulder topography controls regional drainage patterns and sediment access into the lake. Large fluvial and deltaic systems tend to enter the rift from the up-dip side of half-grabens or along the rift axis, while fans tend to enter from the border fault side.

  • PDF

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF