• Title/Summary/Keyword: 탄성상수

Search Result 156, Processing Time 0.033 seconds

Dynamic Rheological Properties of Gelatin (젤라틴의 동적 레올로지 특성)

  • Choi, Yun-Hee;Lim, Seung-Taik;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.830-834
    • /
    • 2002
  • 본 연구는 동적 전단진동(dynamic shear oscillation) 측정방법을 이용하여 농도가 젤라틴의 동적 레올로지 특성에 미치는 영향에 대하여 관찰하였다. $5^{\circ}C$에서의 젤라틴의 저장 탄성률(storage modulus, G#)과 손실 탄성률(loss modulus, G@)은 농도가 증가함에 따라 증가하는 경향을 보였다. 0.9%를 제외한 모든 농도(2.0-4.9%)에서 젤라틴의 G#은 G@보다 매우 높은 값을 나타냈으며, G#과 G@이 ${\omega}$ 의존성이 없는 true 겔과 같은 거동을 나타냈다. 젤라틴의 농도와 K#(G#에 대한 절편)와의 관계에서는 높은 결정계수$(R^2=0.99)$를 보여주면서 좋은 상관관계를 나타냈다. 여러 온도범위$(-5,\;0,\;5,\;10^{\circ}C)$에서 각 온도별로 측정된 K#값은 $-5^{\circ}C(59.5Pa)\;>\;0^{\circ}C(4.09Pa)\;>\;5^{\circ}C(1.41Pa)\;>\;10^{\circ}C(0.35Pa)$의 순으로 가장 낮은 온도에서 K#값이 가장 높은 것으로 나타났다. 또한 냉각과정에서 최종냉각온도인 $5^{\circ}C$에서 측정된 젤라틴의 최대 G#수치는 4.9%(2399Pa)>4.1%(1744Pa)>3.0%(1159Pa)>2.0%(519.3Pa)>0.9%(3.15Pa)의 순으로 높은 농도에서 높게 나타났다. Aging 10시간 동안 젤라틴 겔의 구조형성은 겉보기 first-order kinetics로부터 겉보기 구조형성 속도상수(K)를 결정함으로써 파악될 수 있다. 젤라틴의 농도가 증가함에 따라 K값은 증가하였으며, 농도와 K값과의 관계는 높은 결정계수$(R^2)$를 나타내면서 좋은 상관관계를 보여주었다(Fig. 7). 10시간 aging 후 G#은주파수$({\omega})$ 의존성이 없이 독립적인 것으로 나타났다. 따라서 이들 젤라틴 겔은 aging하는 동안에 탄성이 점점 강해지고 10시간 후에는 가교결합의 밀도가 증가하여 강한 탄성을 가진 고무질 망상구조(rubber network)를 형성했음을 알 수 있다.

Probabilistic Behavior of In-plane Structure due to Multiple Correlated Uncertain Material Constants (상호 상관관계가 있는 다중 재료상수의 불확실성에 의한 평면구조의 확률론적 거동)

  • Noh Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.291-302
    • /
    • 2005
  • Due to the importance of the parameter in structural response, the uncertain elastic modulus was located at the center of stochastic analysis, where the response variability caused by the uncertain system parameters is pursued. However when we analyze the so-called stochastic systems, as many parameters as possible must be included in the analysis if we want to obtain the response variability that can reach a true one, even in an approximate sense. In this paper, a formulation to determine the statistical behavior of in-plane structures due to multiple uncertain material parameters, i.e., elastic modulus and Poisson's ratio, is suggested. To this end, the polynomial expansion on the coefficients of constitutive matrix is employed. In constructing the modified auto-and cross-correlation functions, use is made of the general equation for n-th moment. For the computational purpose, the infinite series of stochastic sub-stiffness matrices is truncated preserving required accuracy. To demons4rate the validity of the proposed formulation, an exemplary example is analyzed and the results are compared with those obtained by means of classical Monte Carlo simulation, which is based on the local averaging scheme.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴 특성)

  • Lee, Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

Signal Processing Algorithm for Controlling Dynamic Bandwidth of Fiber Optic Accelerometer (광섬유 가속도계 센서의 동적구간 조절을 위한 신호처리 알고리즘 개발)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.291-298
    • /
    • 2007
  • This paper presents a signal processing algorithm to control the dynamic bandwidth of a single-degree-of-freedom (SDF) dynamic sensor system. An accelerometer is a representative SDF sensor system. In this paper, a moire-fringe-based fiber optic accelerometer is newly used for the test of the algorithm. The accelerometer is composed of one mass, one damper and one spring as a SDF dynamic system. In order to increase the dynamic bandwidth of the accelerometer, it is needed to increase the spring constant or decrease the mass. However, there are mechanical difficulties of this adjustment. Therefore, the presented signal processing algorithm is very effective to overcome the difficulties because it is just adjustment in the signal processing software. In this paper, the novel fiber optic accelerometer is introduced shortly, and the algorithm is applied to the fiber optic accelerometer to control its natural frequency and damping ratio. Several simulations and experiments are carried out to prove the performance of the algorithm. As a result, it is shown that the presented signal processing algorithm is a good way to broaden the dynamic bandwidth of the fiber optic accelerometer.

A Study on Evaluation to Safety of Fire-proof Safety Helmet (소방 안전모의 안전도 평가에 관한 연구)

  • 한응교;엄기원;박준서;이성우
    • Fire Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.5-14
    • /
    • 1991
  • Now a days, according that the occurrence of industrial disaster is on the increase, the necessity of protective goods is increasing. Specially estimate of safety helmet for protect of head is very important. On this, in this paper, amplification ratio and natural frequencies of fire safety helmet and general safety helmet are estimated by falling impect test and frequency analysis. Also. trend of damping is estimated by using these test results. And we know that the fire safety helmet is more safe than general safety helmet for protect of head.

  • PDF

New Design and Application of PVDF Ultrasonic Transducer for Measurement of Material Properties (재료물성 측정을 위한 직선집속 PVDF 초음파 트랜스듀서의 새로운 설계 및 응용)

  • Hong Soung-Wook;Kim Jung-Soon;Kim Sang-Yoon;Kim Moo-Joon;Ha Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.164-171
    • /
    • 2006
  • If the velocities of longitudinal, transverse and leaky surface acoustic waves in an isotropic material are given, the elastic constants and density of the material can be deduced analytically. Those velocities have been measured using three ultrasonic transducers with different vibrational modes so far. In this paper a line-focusing PVDF transducer with divided electrodes was newly proposed and designed for measuring approximate velocities of the three waves. The measurement method established in this study for each waves using the transducer was applied to several isotropic materials including fused quartz. The elastic stiffness constants and densities of the materials were calculated using the measured velocities, and the accuracies were discussed. It was shown that the obtained results are in good accord with the reference values.

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition (이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산)

  • Kang, Hyunmin;Baek, Kyoungbae;Wang, Sookyun;Park, Jinyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.661-672
    • /
    • 2012
  • Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

An analysis of horizontal deformation of a pile in soil using a beam-on-spring model for the prediction of the eigenfrequency of the offshore wind turbine (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 탄성지지보 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Kim, Tae-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2016
  • In the prediction of response of a pile in soil, numerical approaches such as a finite element method are generally applied due to complicate nonlinear behaviors of soils. However, the numerical methods based on the finite elements require heavy efforts in pile and soil modelling and also take long computing time. So their usage is limited especially in the early design stage in which principal dimensions and properties are not specified and tend to vary. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to model and take short computing time. Therefore, if they are validated to be reliable, they would be applicable in predicting responses of a pile in soil, particularly in early design stage. In case of wind turbines regarded in this study, it is required to assess their natural frequencies in early stages, and in this simulation the supporting pile inserted in soil could be replaced with a simplified elastic boundary condition at the bottom end of the wind turbine tower. To do this, analysis for a pile in soil is performed in this study to extract the spring constants at the top end of the pile. The pile in soil can be modelled as a beam on elastic spring by assuming that the soils deform within an elastic range. In this study, it is attempted to predict pile deformations and influence factors for lateral loads by means of the beam-on-spring model. As two example supporting structures for wind turbines, mono pile and suction pile models with different diameters are examined by evaluating their influence factors and validated by comparing them with those reported in literature. In addition, the deflection profiles along the depth and spring constants at the top end of the piles are compared to assess their supporting features.

A Study of Compressibility on a Natural Almandine Using Synchrotron Radiation (방사광을 이용한 천연산 알만딘의 압축성 연구)

  • Hwang Gil Chan;Kim Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.249-257
    • /
    • 2005
  • Garnet is one of the major minerals down to the top of lower mantle approximately 660 km with spinel and pyroxenes. Garnet transforms into perovskite and corundum in the lower mantle, however its sequence is still in controversy. We measured the compressibility of a natural almandine at high-pressure up to 62 CPa using Mao-Bell type diamond anvil cell (DAC) at room temperature. Chemical formula of the specimen is ($Fe_{2.52}Ca_{0.21}Mg_{0.18}Mn_{0.12})Al_{2.23}Si_{2.97}O_{12}$. Results of this compression study are as follows: a : $10.175\;{\AA}$, V : $1251.16\;{\AA}^{3}$, $D_{x}$ : $5.265\;g/cm^{3}$ at 62 GPa; bulk modulus is 156 GPa using Birch-Murnaghan equation of state (EoS) with a fixed $K_{0}\;'$ of 4. This study would be the first time attempt accomplished with the high pressure DAC using synchrotron radiation at the Pohang Light Source (PLS) in Korea.

A Study on the Lateral Vibration Reduction of the High-speed Electric Multiple Unit (동력분산형 고속열차의 횡방향 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Park, Joon-Hyuk;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.797-803
    • /
    • 2019
  • This study was carried out to reduce the lateral vibration of high-speed electric multiple units. In the study, the high-speed electric multiple unit prototype (HEMU-430X) has a high lateral vibration at low equivalent conicity regardless of the wheel profiles (XP55, GV40, S1002). As wheel wear progresses and the equivalent conicity increases, the lateral vibration tends to decrease. The reason is that a combination of the suspension characteristics causes the body and bogie to resonate at a frequency of 1.4 Hz when the equivalent conicity is low, resulting in body hunting. An investigation of the lateral vibration of overseas high-speed trains showed that a decrease in the hydraulic stiffness of the yaw damper could improve the vibration. The series stiffness of the yaw damper is a combination of the hydraulic stiffness and elastic joint. In this study, an attempt was made to improve the lateral vibration by lowering the stiffness of the elastic joint. The series stiffness of the adjusted yaw damper was approximately 60% compared to the original one. The on track test results showed improvement in the lateral vibration for both running directions. The vibration reduction method of this study can be used for EMU-250 and EMU-320 in future commercial operations.