• Title/Summary/Keyword: 탄성복원력

Search Result 22, Processing Time 0.03 seconds

The effect of thickness and deflection of orthodontic thermoplastic materials on its mechanical properties (교정용 열가소성 재료의 두께와 변형량이 재료의 물리적 특성에 미치는 영향)

  • Min, Sam;Hwang, Chung-Ju;Yu, Hyung-Seog;Lee, Sang-Bae;Cha, Jung-Yul
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.16-26
    • /
    • 2010
  • Objective: The purposes of this study were to evaluate the force and stress depending on the type, deflection and thickness of the materials and to evaluate the mechanical properties of thermoplastic materials after repeated loading. Methods: Four types of thermoplastic products were tested. Force until the deflections of 2.0 mm and the stress when the materials were restoring to its resting position were evaluated. The mechanical properties of thermoplastic materials evaluated after 5 repeated loading cycles. Results: The interaction was observed between the thickness and the deflection (p < 0.05) from the regression equation. Thickness and amount of deflection rather than products and materials showed the largest effect on force and stress. In all products, at least 159 gf of force was required for more than 1.0 mm deflection or when materials with 1.0 mm thickness were deflected. The stress recorded was more than 19 gf/$mm^2$. During repeated loading, each group showed significant difference on the force and the stress (p < 0.01), 10 - 17% reduction of force and 4 - 7% reduction of stress in average. Conclusions: Proper thickness of thermoplastic materials and deflection level of tooth movement should be decided for the physiologic tooth movement. Force decay after repeated loading should be considered for the efficient tooth movement.

Development of a Nonlinear SI Scheme using Measured Acceleration Increment (측정 가속도 증분을 사용한 비선형 SI 기법의 개발)

  • Shin, Soo-Bong;Oh, Seong-Ho;Choi, Kwang-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.73-80
    • /
    • 2004
  • A nonlinear time-domain system identification algorithm using measured acceleration data is developed for structural damage assessment. To take account of nonlinear behavior of structural systems, an output error between measured and computed acceleration increments has been defined and a constrained nonlinear optimization problem is solved for optimal structural parameters. The algorithm estimates time-varying properties of stiffness and damping parameters. Nonlinear response of restoring force of a structural system is recovered by using the estimated time-varying structural properties and computed displacement by Newmark-$\beta$ method. In the recovery, no pre-defined model for inelastic behavior has been assumed. In developing the algorithm, noise and incomplete measurement in space and state have been considered. To examine the developed algorithm, numerical simulation and laboratory experimental studies on a three-story shear building have been carried out.

Geophysical exploration for the Site Charcteristics of Iljumun Gate in Hwanseongsa Temple (지구물리탐사를 이용한 경산시 환성사 일주문 지반조사)

  • Kim, Ki-Hyun;Suh, Man-Cheol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.131-136
    • /
    • 2008
  • We performed a non-destructive geophysical survey such as an elastic wave survey, electric specific resistance survey, plate loading test, etc. in order to grasp the structure and status of the ground around the pillar gate and to provide the directions and design data for preservation and maintenance during reconstruction. The result of electric specific resistance survey shows 50-1300 ohm-m range of general electric specific resistance distribution. Besides, the positions around 1m south of stone pillars, between stone pillar No.3 and 4, and 1m north of stone pillar No.2 and 3 show abnormality of relatively lower electric specific resistance than their surroundings. The abnormality of low electric specific resistance appearing between stone pillar No.3 and 4 shows consistency with the abnormal section appearing from the result of elastic wave reflection survey. The result of a plate loading test shows that allowable bearing force is over $10.70tf/m^2$, and the settlement amount at this time was calculated as 19.635mm. The design load during reconstruction of pillar gates was calculated as $16.37t/m^2$ by applying assumption values, which is far more than the allowable bearing force, so it is judged that a measure to strengthen the foundation ground is necessary.

  • PDF

Hybrid Damper of Steel Strip and Spring (강재 스트립과 스프링의 혼합형 댐퍼)

  • Kim, Dong-Baek;Lee, In-Duk;Lee, Jae-Won;Kim, Jong-Hoon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.299-300
    • /
    • 2022
  • 구조물의 내진보강방법 중에서 가장 널리 이용되는 방법인 강재 이력형 감쇠장치는 수평하중에 대한 응력-변위 곡선을 이용하여 지진 에너지를 소산시키는 방법인데, 이 경우 편심하중 등에 의해서 부재가 면 외 방향으로 거동하여 응력-변위곡선이 불규칙하여 그 결과의 신뢰성이 떨어지는 경우가 있다. 이러한 형상을 방지하기 위해서는 별도의 채널(Channel)을 시공하는 불편함을 감수해야 하며, 또한 수평력이 반복적으로 작용할 때 그 효과를 장담할 수 없는 문제점이 있다. 본 연구에서는 강재 스트립과 스프링을 결합한 댐퍼를 고안하여 스프링은 탄성변형을, 강재 스트립은 소성변형을 받게 하는 혼합형 댐퍼를 개발하고자한다. 여기서, 스프링은 복원력으로 작용하여 반복하중에 대한 저항성을 키우고 강재 스트립의 하중변위 곡선을 규칙적으로 하는 역할을 수행하게 되며 에너지 소산량을 계산할 때 편리함과 정확도를 높이고자 한다. 강재 스트립의 폭과 길이는 일정하지만 두께를 변화시켜서 5종류를 선택하였으며, 댐퍼 1개당 3개의 스트립을 정삼각형 형태로 배치하고 그 중심에 상당한 강성을 갖는 스프링을 갖는 형태로 제작하였다. 댐퍼 시험체는 5개를 제작한 후, 이 댐퍼를 구조물에 배치하였을 때의 지진에 대한 에너지 소산량과 부재력을 검토하여 댐퍼의 안전성(Safety)를 검증하고자 한다.

  • PDF

The Development of Eco-friendly Fiber Materials for Transport (수송용 친환경 섬유소재 개발)

  • Bok, Jin-Seon;Lee, Hyun-Seok;Jeong, Geung-Sik;Lee, Ki-Young;Park, Chang-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.18-18
    • /
    • 2012
  • 전 세계적으로 이산화탄소 배출량 저잠을 위해 모든 산업분야에서 연구개발의 중점을 두고 있다. 그의 일환으로 자동차 산업에서는 EU규제에 따라 리사이클이 가능한 소재 개발이 요구되고 있으며, 그중 많은 양이 사용되고 있는 PU Foam의 대체 재료 개발이 시급한 실정이다. 기존 자동차의 흡음재로 주로 사용되고 있는 PU Foam 소재는 통기성이 부족할 뿐만 아니라 연소 시 인체에 유해한 HCN Gas를 발생시키고, 한번 성형된 부품은 Recycle 및 Re-Use가 불가능하다는 단점이 있다. 또한 장시간 사용시 황변 발생과 악취가 발생하는 등으로 최근 대두되고 있는 자동차 내장재 감성품질 향상 측면에 한계를 나타내고 있다. 이러한 Low Melting 성능을 가지는 PET 부직포 소재의 한계를 극복하기 위하여 저융점 성능의 Elastic Fiber의 개발과 함께 고탄성 복합부직포 소재의 개발을 통해 높은 변형률과 우수한 복원력을 나타내는 환경친화형 열가소성 탄성체(Thermoplastic Elastomer) 개발을 추진하고 있다. 고탄성 복합부직포는 자동차 내장재 성형 시 열을 가하더라도 Elastomer 자체의 탄성 발현을 통해 초기의 Bulky성을 유지할 수 있으며, Recycle 및 Re-use가 가능하여 환경 친화적인 측면에서도 큰 장점을 갖고 있다. 자동차용 흡음 내장재뿐만 아니라 각종 수송용 차량의 경량화 및 쾌적성 향상을 위한 용도로써 자동차 내장용 PU Foam의 57% 이상을 차지하고 있는 Seat Cushion재 등의 대체가 가능하며, 다양한 산업분야에서 사용되고 있는 PU Foam의 대체로 다양한 용도 전개가 가능할 것으로 예상된다. 본 연구에서는 PU Foam의 대체 재료로 각광받고 있는 Elastic PET를 개발하여 자동차 내장재로의 적용 가능성을 검토하였다.

  • PDF

Estimation of Interstory Drift for Moment Resisting Reinforced Concrete Frames Using Equivalent SDOF System (등가 1자유도계를 이용한 철근콘크리트 골조건물의 층간변위 응답 산정)

  • Kang, Ho-Geun;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.25-33
    • /
    • 2004
  • To evaluate the seismic capacity of a multistorey building structures in performance based seismic design, it is needed to convert MDOF model into equivalent SDOF model. This paper presents predictions for interstory drift of multistorey structures using method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through performing nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. Comparing the interstory drift of multistorey structures calculated by time history analysis and those evaluated by an equivalent SDOF model, the adequacy and the validity of converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. Inelastic first mode shapes are expected to be more accurate than elastic first mode shapes in obtaining interstory drift of multistorey structures from equivalent SDOF model.

Microfluidic Suction Pump based on Restoring Force of Elastomer for Liquid Transportation in Microfluidic System (미세유체시스템의 유체이송을 위한 탄성체의 복원력을 이용한 흡입형 미세유체펌프)

  • Byun, Kang Il;Han, Eui Don;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.81-86
    • /
    • 2015
  • This paper presents a disposable passive suction pump that uses the restoring force of an elastomeric chamber for liquid transportation in a microfluidic system. The proposed suction pump can be operated by finger pressure without any peripheral equipment. To adjust the generated suction pressure, five different displacements of the suction chamber ceiling, two different chamber shapes, and five different elastic moduli of the elastomer were considered. For a cylindrical chamber with a 5 mm height and 5 mm radius, the generated suction pressure and flow rate increased almost linearly up to about 31 kPa and $160.8{\mu}L/min$, respectively, depending on the chamber deformation. A maximum suction pressure of $42.9{\pm}0.7kPa$ was obtained for a hemispherical chamber with a 2.1 mm height and 5 mm radius.

Stiffness Analysis of Spring Mechanism for Semi-Automatic Gripper Motion of Tendon-Driven Remote Manipulator (와이어 구동방식 원격조작기용 그리퍼의 반자동 파지 및 해제 동작을 위한 스프링 강성 분석)

  • Yu, Seung-Nam;Lee, Jong-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1405-1411
    • /
    • 2012
  • Remote handling manipulators are widely used for performing hazardous tasks, and it is essential to ensure the reliable performance of such systems. Toward this end, tendon-driven mechanisms are adopted in such systems to reduce the weight of the distal parts of the manipulator while maintaining the handling performance. In this study, several approaches for the design of a gripper system for a tendon-driven remote handling system are introduced. Basically, this gripper has an underactuated spring mechanism that is combined with a slave manipulator triggered by a master operator. Based on the requirements under the specified tendon-driven mechanism, the connecting position of the spring system on the gripper mechanism and kinematic influence coefficient (KIC) analysis are performed. As a result, a suitable combination of components for the proper design of the target system is presented and verified.

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Hysteresis Behavior of Partially Restrained Smart Connections for the Seismic Performance of Composite Frame (CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동)

  • Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2015
  • The partially restrained smart CFT (concrete filled tube) column-to-beam connections with top-seat split T connections show various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of T-stub, and material properties. This paper presents results from a systematic three-dimensional nonlinear finite element study on the structural behavior of the top-seat split T connections subjected to cyclic loadings. This connection includes super-elastic shape memory alloy (SMA) T-stub and rods to obtain the re-centering capabilities as well as great energy dissipation properties of the CFT composite frame. A wide scope of additional structural behaviors explain the influences of the top-seat split T connections parameters, such as the different thickness and gage distances of split T-stub.