• Title/Summary/Keyword: 탄산칼슘

Search Result 487, Processing Time 0.021 seconds

The Extraction of Ca in Electric arc Furnace Slag for CO2 Sequestration (CO2고정화(固定化)를 위한 전기로제강(電氣爐製鋼)슬래그의 칼슘성분(成分) 침출(浸出))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Mineral carbonation has been proposed as a possible way for $CO_2$ sequestration. The electric arc furnace slags consist of calcium, magnesium and aluminum silicates in various combinations. If they could be used instead of natural mineral silicates for carbonation, considerable energy savings and $CO_2$ emissions reductions could be achieved. Indirect aqueous carbonation of the slags consists of two steps, extraction of calcium and carbonation. Acetic acid leaching of electric arc furnace slags had been already studied to extract Ca in them, but it was reported that the carbonation of the extracted $Ca^{2+}$ in the leached solution would suffer from too slow kinetics, even at high pressure of $CO_2$. In this work, to develop more efficient extraction of the electric arc furnace slags, hydrochloric acid leaching to separate calcium from them was studied, and the results were compared with the acetic acid ones. The phase boundary between $Ca^{2+}$ and $CaCO_3$ in the solution with pH was determined by thermodynamic calculations. Hydrochloric acid was more effective than acetic acid for the extraction of Ca in electric arc furnace slag, and there is a possibility to recycle an unreacted hydrochloric acid in the leached solution by electrolysis or evaporation.

Evaluation of Durability of Cement Matrix Replaced with Ground Calcium Carbonate (중질탄산(重質炭酸)칼슘을 혼합(混合)한 시멘트 경화체(硬化體)의 내구특성(耐久特性) 평가(評價))

  • Jung, Ho-Seop;Lee, Seung-Tae;Kim, Jong-Pil;Pak, Kwang-Pil;Kim, Seong-Soo
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.74-80
    • /
    • 2006
  • In this article, we would like to investigate a durability characterization of cement mortar with inert filler, which is ground calcium carbonate(GCC). The kinds of techniques to evaluate cement mortar are chloride ion ingress, carbonation and sulfate attack. For the experimental result of the resistance of chloride ion ingress, carbonation and sulfate attack, as the addition of GCC makes decreasing the permeability by micro-filler effect, the specimens of $5{\sim}15%$ ratio of replacement are superior to the GCC0 mortar specimen with respect to durability of cement matrix in this scope.

Effect of Agitation and Additive on the Vaterite Contents of Precipitated Calcium Carbonate from Oyster Shell Waste (폐 굴껍질 이용 침강성 탄산칼슘 제조에서 교반속도와 첨가제가 Vaterite 함유량에 미치는 영향)

  • Young-Cheol Bak
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.95-101
    • /
    • 2023
  • An experiment was conducted to produce vaterite-type precipitated calcium carbonate from waste oyster shells in order to use them as recyclable resources. Calcined oyster shells containing calcium oxide as their main component were prepared at a temperature of 800℃ for 24 h. The oyster shells were dissolved in nitric acid or hydrochloric acid solution to make 0.1 M calcium nitrate or calcium chloride aqueous solution, and a carbonation reaction was performed using a 0.1 M sodium carbonate aqueous solution under various experimental conditions, which included varying the amount of aspatic acid additive, the amount of NH4OH added, the reaction time, the reaction temperature, the stirring speed, and the type of dissolved acid. The XRD, SEM, and size distributions were analyzed and the vaterite content was calculated. Spherical precipitated calcium carbonate with a vaterite content of 95.9% was synthesized by adding 0.1 mol aspatic acid/1 mol CaO and 2 cm3 of NH4OH, and reacting for 1 h at 25℃ while stirring at 600 rpm. The average particle diameter was found to be 12.11 ㎛. Calcium carbonate contatining high vaterite is used as high value added calcium carbonate for medical, food, inke additiver, etc.

Effect of Vinegar on the Solubility of Calcium (칼슘 용해도에 미치는 식포의 영향)

  • Jang, Se-Young;Baek, Chang-Ho;Jeong, Kyou-Ho;Park, Nan-Young;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.12 no.2
    • /
    • pp.112-116
    • /
    • 2005
  • This study was performed to investigate the effect of vinegar on the solubility of 3 types of calcium. After solubilized, total acidity and calcium content were increased as initial acid and calcium concentration increased. Addition of vinegar resulted in pH decrement while total acidity increment. Calcium content in seaweed calcium and calcium carbonate were higher than that in nano calcium. Saturated concentration of seaweed calcium and calcium carbonate were $7.0\%$ (w/v) and $6.0\%$ (w/v), respectively, in vinegar and calcium content were $2,234\;mg\%$ and $2,490\;mg\%$, respectively.

Analysis of Improved Shear Stiffness and Strength for Sandy Soils Treated by EICP (EICP 방법으로 처리된 사질토의 전단 강성도 및 강도 증가 분석)

  • Song, Jun Young;Ha, Seong Jun;Jang, Jae Won;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.17-28
    • /
    • 2020
  • This study presents the experimental results of ground improvement efficiency induced by enzyme-induced carbonate precipitation (EICP) in soils. First, the optimal mixture ratio of EICP solution was determined by comparing the amount of induced carbonate depending on the different ratio among urea, CaCl2, and urease. Next, we evaluated the shear stiffness and strength of EICP-treated sandy soil by performing shear wave velocity measurement and triaxial shear test. Furthermore, induced carbonate in treated soil was visually investigated by X-ray CT and SEM analysis. The results showed that the maximum shear stiffness evolved 19~30 times after 6 hours of reaction time compared with non-treated sands. Also, the cohesion and the friction angle tended to increase and decrease, respectively, as the amount of induced carbonate increased.

Strength and Effectiveness of Grouting of Sand Treated with Bacteria (Bacteria로 처리된 모래지반의 강도 및 주입효과)

  • Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.65-73
    • /
    • 2013
  • The purpose of this study is to confirm strength and effectiveness of grouting of the sand treated with bacteria. In order to analyze the cementation of sand treated with bacteria, five types of specimens(Not treated, Cement 2% treatment, Cement 4% treatment, Cement 2% + $CaCO_3$ 2% treatment and $CaCO_3$ 4% treatment) were made. Unconfined compressive strength tests were done on $D\;5cm{\times}H\;10cm$ specimens and biogrouting tests were performed on $D\;6cm{\times}H\;12cm$ specimens to observe the effectiveness of grouting with bacteria. As a result, Cement 2% + $CaCO_3$ 2% treatment was found to be the most effective in terms of the unconfined compressive strength.

Characterization of CaCO3 Formation Using an Ion Selective Electrode : Effects of the Mg/Ca Ratio and Temperature (이온 선택성 전극을 이용한 탄산칼슘 형성 특성 연구 : 마그네슘-칼슘 비율과 반응 온도의 영향)

  • Misong Han;Byoung-Young Choi;Seung-Woo, Lee;Jinyoung Park;Soochun Chae;Jun-Hwan Bang;Kyungsun Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.111-120
    • /
    • 2023
  • The nucleation mechanism was studied using a calcium ion selective electrode (Ca ISE) to observe the formation of CaCO3, a representative mineral in the CO2 cycle, and to analyze the effect of the Mg/Ca-ratio and temperature on the formation of pre-nucleation cluster (PNC) and CaCO3. As a result of the experiment, a small amount of crystal was formed. Energy dispersive X-ray spectroscopy (EDS) was used for surface element analysis, and a field emission scanning-electron microscope (FE-SEM) was used for the morphology analysis of synthesized carbonates. These results showed that various shapes of crystalline CaCO3 (calcite, aragonite, etc.) were observed for each Mg/Ca ratio and temperature. In addition, the calibration plot obtained from Ca ISE showed information on the formation process of CaCO3. Our results showed that as magnesium ions interfered with the binding of calcium and carbonate ions and delayed the aggregation between PNCs, the nucleation and formation of CaCO3 were delayed. On the other hand, the temperature showed an opposite trend as compared to the effect of magnesium under our experimental conditions, indicating that temperature accelerated the formation of CaCO3. Furthermore, the morphology of CaCO3 clearly changed according to the Mg/Ca ratio and temperature, and it was confirmed that the two factors are very important for CaCO3 formation in that they could affect the overall process.

Studies on the Preparation of Precipitated Calcium Carbonate(I) : Formation and Transformation of Amorphous Calcium Carbonate (침강성탄산칼슘의 제조에 관한 연구(I) : 비정질탄산칼슘의 생성과 전이)

  • Ha, Ho;Park, Seung-Soo;Lee, Hee-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.522-526
    • /
    • 1992
  • Carbonation process of an aqueous solution of $Ca(OH)_2$ with $CO_2$ gas at $10^{\circ}C$ has been studied to investigate the formation and transformation processes of amorphous calcium carbonate. It was suggested that the amorphous calcium carbonate consisting of spherical particles with the diameter in the range of $0.02{\sim}0.05{\mu}m$ be a non-stoichiometric $CaCO_3$ phase containing small amounts of $H_2O$ and small incorporations of $HCO^-_3$. Amorphous $CaCO_3$ is unstable in the aqueous solution and converts to calcite, and its morphology depends on the carbonate species present in the slurry such that with [$CO_3^{2-}$] prevailing, chain-like calcite composed of ultrafine colloidal particles and with [$HCO^-_3$] prevailing, rhombohedral particles of calcite are formed respectively. Therefore, morphological control of calcium carbonate crystals could be expected by the adequate controls of transformation process of the amorphous calcium carbonate.

  • PDF

Carbon Dioxide Storage and Calcium Carbonate Production through Indirect Carbonation Using Paper Sludge Ash and Chelating Reagents (제지슬러지소각재 및 킬레이트제 활용 간접탄산화 방법을 통한 이산화탄소 저장 및 탄산칼슘 생성)

  • Jeon, Junhyeok;Kim, Myoung-Jin
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.35-44
    • /
    • 2019
  • In this study, we conducted experiments to store $CO_2$ and produce $CaCO_3$ through indirect carbonation using paper sludge ash (PSA) and three chelating reagents (fumarate, IDA and EDTA). Fumarate and IDA used as solvents could facilitate the indirect carbonation reaction to store more $CO_2$ than water. When 0.1 M fumarate and IDA were used, $CO_2$ storage was 63 and $89kg-CO_2/ton-PSA$, respectively, and $CaCO_3$ yield was 144 and $202kg-CaCO_3/ton-PSA$. For the case of EDTA, however, the carbonation was hardly progressed. As either the concentration or Ca-ligand stabilization constant of each chelating reagent increased, the calcium extraction efficiency from PSA increased. In addition, the carbonation efficiency was influenced by the Ca-ligand stabilization constant. As the Ca-ligand stabilization constant increased, more calcium could be extracted from the PSA. With the constant larger than that of $CaCO_3$ ($10^{8.35}$), however, the carbonation reaction was not proceeded.

A study on the preparation of phosphatic calcium compounds using the shell resources (패각을 이용한 인산칼슘계 화합물의 제조에 관한 연구)

  • 이인곤;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • The phosphatic calcium compounds such as calcium hydrogen phosphate, bone ash, hydroxyapatite and tricalcium phosphate were prepared using the high purity calcium hydroxide and calcium carbonate obtained from shell resources. Calcium hydrogen phosphate had been prepared using the high purity calcium hydroxide and phosphoric acid solution. Using the calcium hydrogen phosphate as a starting materials, bone ash have been prepared by solid state reaction method and hydroxyapatite could be obtained by hydrothermal treatment method, respectively. The tricalcium phosphate was prepared by the solid state reaction of a stoichiometic mixture of bone ash and high purity calcium carbonate. In this paper, the optimal preparation process and conditions of phosphatic calcium compounds were established.

  • PDF