• Title/Summary/Keyword: 탄산용액

Search Result 228, Processing Time 0.029 seconds

Petrography of Hongcheon Fe-REE Deposit (홍천 철-희토류광상의 암석기재학)

  • 이한영;박중권;황덕환
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.90-102
    • /
    • 2002
  • The studied Fe-REE ore consists of magnetite, ankerite, siderite, magnesite and strontianite as the major constituent, and monazite, columbite, fergusonite, apatite, aegirine-augite, Na-amphibole, pyrite, chalcopyrite, sphalerite, molybdenite and barite as accessaries. Wall rock of ore deposits is replaced to fenite due to Na-metasomatism and mainly consists of sugary albite and Na-amphibole. Monazite $Ce_{0.49}La_{0.31}Pr_{0.14}Nd_{0.03}Gd_{0.03})PO_4$ is the main mineral for REE deposit and shows myrmekitic intergrowth with strontianite $Ca_{0.02-0.16}Sr_{0.84-0.98}CO_3$ and is corroded by carbonate minerals. Mineral forming sequence can be divided into early and late periods by the development of microfractures. The early period minerals such as magnetite, ankerite, magnesite, monazite and apatite show well developed networks of microfractures due to cataclastic deformation caused by enriched $CO_2$ gas in melts during emplacement. The late minerals of columbite, fergusonite, siderite molybdenite, chalcopyrite and sphalerite formed after the brecciation event and have little micro-fractures. Ankerite, magnesite, monazite, strontianite, barite and pyrite seem to be formed continuously from the ealy to the late period since they show textures both with well developed fractures and also with little fractures. Mineral chemistry, mineral assemblages such as various carbonate minerals, magnetite, REE minerals of monazite and fergusonite, Sr mineral of strontianite, and Nb minerals of columbite, myrmekitic texture of monazite and ankerite, and well developed fenite along ore deposits observed from this studied area strongly indicate that this Hongcheon Fe-REE ore deposits are formed from carbonatitic melt and its rock type is late differentiated Fe-carbonatite or ankerite-carbonatite.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Influence of Bicarbonate Concentrations in Nutrient Solution on the Growth, Occurrence of Daughter Plants and Nutrient Uptake in Vegetative Propagation of 'Seolhyang' Strawberry (양액의 중탄산 농도가 '설향' 딸기의 생육, 자묘 발생 및 무기이온 흡수에 미치는 영향)

  • Lee, Hee Su;Choi, Jong Myung;Kim, Tae Il;Kim, Hyun Sook;Lee, In Ha
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • The objective of this research was to investigate the influence of bicarbonate ($HCO_3{^-}$) concentrations in nutrient solution on the growth and physiological disorders in mother plants and occurrence of daughter plants in propagation of 'Seolhyang' strawberry (Fragaria ${\times}$ ananassa Duch.). To achieve this, the mother plants were transplanted to coir dust + perlite (7:3, v/v) medium and Hoagland solution was modified to contain 60, 90 (control), 120, 180, and $240mg{\cdot}L^{-1}$ of $HCO_3{^-}$. The symptoms of Fe, Zn and B deficiencies appeared on the mother plants in the $HCO_3{^-}$ of $240mg{\cdot}L^{-1}$ from the 60th day after treatment. The symptoms spread to all plants in the $240mg{\cdot}L^{-1}$ $HCO_3{^-}$ including daughter plants at 90 days after treatment. The$HCO_3{^-}$ concentrations higher than $120mg{\cdot}L^{-1}$ suppressed the growth of mother plants such as leaf number, chlorophyll content, fresh weight and other growth parameters. While the mother plants in $60mg{\cdot}L^{-1}$ $HCO_3{^-}$ produced 23 daughter plants, while mother plants in $240mg{\cdot}L^{-1}$ $HCO_3{^-}$ produced 13 daughter plants. The final pH 126 days after treatment in the $HCO_3{^-}$ of 60, 90, 120, 180 and $240mg{\cdot}L^{-1}$ were 5.4, 5.8, 7.3, 7.9, and 8.3, respectively. The elevation of $HCO_3{^-}$ concentrations in nutrient solution resulted in the decrease of Fe, Mn, Zn and Cu contents of above ground tissue 126 days after treatment. These results indicate that the $HCO_3{^-}$ concentrations higher than $120mg{\cdot}L^{-1}$ inhibited the growth of mother plants and occurrence of daughter plants in vegetative propagation of 'Seolhyang' strawberry.

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

pH변화에 따른 광미와 오염된 토양에 함유된 중금속 용출특성

  • 이평구;강민주;최상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.141-144
    • /
    • 2003
  • 청양 및 서보광산에서 채취한 광미 및 오염된 토양에 대한 산성비를 고려한 용출실험 결과, 아연, 카드뮴 및 망간 pH 6.2-5.8, 철 pH 5.2-3.2, 코발트 pH 4.4-3.2, 구리 pH 3.2-3.0, 납과비소 pH3.0-3.5의 용출조건에서 최초로 각 원소의 용출이 발생하였다. 반응용액의 최종 pH5.0-1.5사이에서 용출되는 중금속은 이온교환형태 및 탄산염광물형태와 수반된 것이 용해된 것이다. 반응용액의 최종 pH1.5이하에서 용출되는 중금속은 철과 밀접하게 수반된 것으로 해석되었다. 청양광산과 서보광산의 광미가 pH2.0이하로 유지되는 경우가 발생한다면, 청양광산은 비소(최대 6,006$\mu\textrm{g}$/g), 아연(최대 2,503$\mu\textrm{g}$/g) 및 납(최대 29,638$\mu\textrm{g}$/g), 서보광산은 납(최대 2,258$\mu\textrm{g}$/g)과 111소(최대 874$\mu\textrm{g}$/g)의 오염확산이 크게 우려되며, 이 결과는 광미에 대한 환경복원이 필요한 것을 지시한다. 서보광산의 오염된 토양은 pH3.0까지의 산성비와 반응하는 경우에는 중금속의 오염확산이 거의 우려되지 않으며, pH3.0이하의 강산 용액과 반응한다면 아연의 오염확산이 우려된다.

  • PDF

Crystal Chemistry and Paragenesis of Aluminum Sulfphates from Mudstones of the Yeonil Group (II): Alunite-halloysite (연일층군 이암에서 산출되는 알루미늄 황산염 광물의 결정화학 및 생성 (II): 알루나이트-할로이사이트)

  • 노진환;최진범
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2000
  • 알루나이트는 포항지역의 제3기 연일층군의 이암 층내의 탄산염 결핵체 주변에서 할로이사이트와 함께 극미립 변질물 (1-2 $\mu\textrm{m}$)로서 산출된다. 알루나이트는 정육면체와 유사한 능면체 결정형을 이루고 침상 내지 단주상의 할로이사이트와 밀접한 공생관계를 이룬다. X-선회절 분석에 의해서 이 알루나이트는 a=6.9897(1) $\AA$, c=17.2327(4)$\AA$, V=728.75(3) $\AA$3의 격자상수값을 갖는 것으로 밝혀졌다. X-선형광된 이 알루나이트의 화학식은 (K0.94N0.06)(Al2.55Fe3+0.45)(SO4)2(OH)6 으로서, 나트로알루나이트 단성분을 6-7 mole%정도 함유하는 것으로 분석되었다. 또한 시차열분석 (TG-DTG-DTA)을 통해서 알루나이트의 승화성 성분들 (H2O와 SO3)의 존재와 함유 정도를 조사하였고, 고온X-선회절분석을 병행하여 이 광물의 OH기의 이탈 반응 (52$0^{\circ}C$)과 고온상으로의 전이 반응 ($600^{\circ}C$$700^{\circ}C$)을 감정 하였다. K/Ar 법으로 측정된 알루나이트의 생성 연대 ($0.342\pm$0.008 Ma)와 안정동위원소들의 분석 결과 ($\delta$18Oso4=-1.7, $\delta$DSMOW=-31, $\delta$34S=-10.8)는 이 알루미늄 황산염 광물이 연일충군의 융기 이후에 야기된 민물의 유입에 의한 표성기원의 변질작용의 결과로 생성되었음을 지시한다. 알루나이트+할로이사이트 공생군의 침전은 이암 내에서 조성된 강산성 (pH=2-3)의 알루미늄 황산염 용액이 탄산염 결핵체를 만나 반응하여 pH가 국지적으로 증가되어 (pH=4) 과포화되는 과정에 의해서 야기되었다. 컴퓨터를 이용한 Al3+의 포화지수에 관한 화학적 평형 모델링 실험 결과, 알루미늄 황산염 용액으로부터의 알루나이트와 할로이사이트의 침전은 pH=4 및 \ulcornerSO42-=10-4M 조건에서 K+과 Si(OH)4의 농도가 10-4M 이상 유지되어야 가능한 것으로 밝혀졌다.

  • PDF

Desalinization of marine soil by the application of straw and lime (개흙의 제염에 미치는 볏짚, 석회의 병용효과)

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 1991
  • A laboratory column experiment was conducted to learn the desalinization effect of rice straw, fresh or predecayed in limed marine soil, compared with gypsum. One third of Ca equivalent to indigenous Na plus Mg of the soil was applied to the top 10g out of 80g of total column soil, mixing one half of it to the top soil and the rest spreading on the surface. 1. Pre-decaying of rice straw in limed marine soil promoted the permeability of column soil. but showed a less effectiveness in desalinization of sodium than lime alone or lime plus fresh rice straw treatemenents. 2. Gypsum and calcium carbonate treatments without rice straw fixed Mg in the limed top soil and washed it down disolving more from the layer immediatly be low the treated top soil But the treatment of calcium carbonate and rice straw both together washed out Mg more from lower layers than the upper's, showing only physical desalinization. 3. The desalinization of Na was also severe in the layer immediately below the $CaSO_4$ treated top soil, leauing more Na ilo the top soil, which seemed to be attributed to the peptisation of the top soil and retard peptisation of desalinization when washed the soil applying not enough amount or non of gypsum.

  • PDF

The Synthesis of Sodium Titanate by the Ion Exchange of H+/Na+ from Hydrous Titanium Dioxide and its Phase Transition (Hydrous Titanium Dioxide로부터 H+/Na+의 이온교환에 의한 티탄산나트륨의 합성 및 성전이)

  • Lee, Jin-Sik;Song, Yon-Ho;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.585-590
    • /
    • 1998
  • Fibrous $Na_xTi_nO_{2n+1}$ whisker was prepared by $H^+/Na^+$ ion-exchange on layered hydrous titanium dioxide ($H_2Ti_4O_9{\cdot}nH_2O$). The ion-exchange reaction was proceeded at 0.5~2.0 M NaOH solution. In the ion-exchange at 2.0 M NaOH solution, 73% of sodium was exchanged and the prepared $Na_xTi_nO_{2n+1}$ whisker was a fibrous crystal of about $10{\sim}20{\mu}m$ of length and about $0.7{\mu}m$ of diameter. The phase transition of the ion-exchange phases identified by the thermal analysis. The result showed that the $Na_xTi_nO_{2n+1}$ whisker was decomposed into $Na_2Ti_6O_{13}$ and $TiO_2$ in the temperature of $200{\sim}600^{\circ}C$.

  • PDF