• 제목/요약/키워드: 탄산용액

검색결과 228건 처리시간 0.045초

Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화 (Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$)

  • 임재석;김가연;임굉
    • 공학논문집
    • /
    • 제5권1호
    • /
    • pp.73-87
    • /
    • 2004
  • 수산화칼슘현탁액과 탄산가스를 출발물질로 15~$50^{\circ}C$의 온도에서 기액반응으로 비정질 탄산칼슘($CaCO_3$.$nH_2 O$)의 생성과정을 전기저도도의 연속측정법, X-선회절법 및 투과전자현미경법을 이용하여 조사한 결과, 반응초기생성물은 비정질 탄산칼슘으로 반응현탁액의 전기전도도는 비정질 탄산칼슘의 생성 중 크게 강하하고 있으며, 이것은 수산화칼슘의 입자표면이 비정질 탄산칼슘미립자로 뒤덮여 용해를 방해받는 것과 비정질 탄산칼슘이 용액 속에서 불안정하여 즉시 용해한 다음 석출하여 칼사이트로 전이되어 미세한 침강성 탄산칼슘이 나란히 결합한 연쇄형 칼사이트가 생성된다. 비정질 탄산칼슘이 연쇄형 칼사이트로 변화하는 동안 현탁액의 전기전도도는 급격히 회복되고 이 과정에서 고농도 수산화칼슘현탁액의 외관점도가 상승한다. 이것은 연쇄형 칼사이트의 뒤얽힘에 의한 것이며, 다시 전기전도도의 1회 회복단계 이후에는 미반응 수산화칼슘에 의하여 비정질 탄산칼슘이 생성이 소멸되어 칼사이트의 성장반응이 이루어지고 pH가 9.5이하에서 연쇄형 칼사이트는 결합부분이 먼저 용해하여 결정질 탄산칼슘으로 분리생성된다. 비정질 탄산칼슘의 생성 및 합성온도의 영역은 전기전도도법에서 $15^{\circ}C$일 때 1차 강하단계(a-단계)에서 가장 적합하다.

  • PDF

소화성궤양시 병용약물이 수용액 중의 오메프라졸 안정성에 미치는 영향 (Effect of Other Medications on the Stability of Omeprazole in Aqueous Solution for the Peptic Ulcer Disease)

  • 이영재;황완균;조성완
    • 한국산학기술학회논문지
    • /
    • 제10권11호
    • /
    • pp.3494-3499
    • /
    • 2009
  • 소화성 궤양의 치료에 일반적으로 병용되어 사용되는 소염진통제인 록소프로펜 또는 알칼리화제인 탄산수소나트륨을 함유한 수용액 중에서 소화성 궤양의 치료에 사용되는 오메프라졸의 안정성에 대한 영향이 실온상태에서 실험하였다. 록소프로펜과 탄산수소나트륨 각각 60 mg을 오메프라졸(600 ${\mu}g$/ml) 용액에 혼합한 후 그 용액을 실온 상태로 80시간 보존하면서 그 분해정도를 원래의 오메프라졸의 농도와 비교하여 각각의 소실 농도를 산출하였다. 오메프라졸의 농도와 크로마토그램의 면적비는 5 - 160 ${\mu}g$/ml 농도에서 상호 직선성을 나타내었고 상대 표준 편차는 3.05 %이하로서 분석이 제대로 이루어졌음을 확인할 수 있었으며 함유 약물과 시간에 따른 오메프라졸의 분해 양상은 가상의 일차 직선 속도식을 나타내는 것을 알 수 있었다. 결론적으로 오메프라졸은 탄산수소나트륨 또는 록소프로 펜과의 병용 투여에 의해 그 안정성이 영향을 받을 수 있다는 것을 확인할 수 있었다.

방사능 계측법에 의한 티탄산 바륨의 특성화 연구 (I). 옥살산염법에 의한 티탄산 바륨의 합성 (A Study on the Characterization of Barium Titanate by a Radiometric Method (I). Synthesis of Barium Titanate by an Oxalate Method)

  • 이철;신용균;정구순
    • 대한화학회지
    • /
    • 제33권1호
    • /
    • pp.65-69
    • /
    • 1989
  • 방사성 바륨 또는 방사성 란탄 추적자를 함유하고 있는 Ba(NO$_3)_2$ 와 TiO(NO$-3)_2$의 무기혼합용액을 옥살산의 에탄올 용액으로 적정하므로써 바륨티탄닐의 옥살산 염을 합성하였고, 이를 1000$^{\circ}$C에서 하소시켜 BaTiO$_3$를 만들었다. 옥살산염의 분석결과는 BaTiO(C$_2O_4)_2{\cdot}4H_2O$이며, 무기혼합용액중 Ba/Ti의 몰비가 0.950∼1.05 범위 내에서 화학양론적 결합으로 합성됨을 방사성 바륨 추적자의 도움으로 쉽게 확인하였고, Perovskite형의 구조임을 XRD로 확인하였다. 그리고 란탄 첨가제가 침전에 화학적으로 균일하게 혼입됨은 방사성 란탄의 추적자 실험으로 발견하였다. 이와 같은 실험적 사실로부터 침전물의 구성 성분의 결합이 분자준위에서 일어나고 또 티탄산바륨이 단일상의 결정임을 설명하였다.

  • PDF

침강성 탄산칼슘을 이용한 젖산칼슘 합성에 관한 연구 (A Study on the Synthesis of Calcium Lactate Using Precipitated Calcium Carbonate)

  • 박주원;조계홍;박진구;안지환;한춘
    • 공업화학
    • /
    • 제19권2호
    • /
    • pp.173-178
    • /
    • 2008
  • 침강성 탄산칼슘(precipitated calcium carbonate, PCC)과 젖산을 반응시켜 칼슘보강제, 조직강화제 등으로 사용되는 젖산칼슘을 제조하고자 하였다. 실험에 사용된 PCC는 탄산화법과 수용액법에 의하여 합성된 칼사이트와 아라고나이트를 사용하였으며, 이렇게 합성된 PCC를 batch 반응기 내에서 젖산용액과 반응시켜 젖산칼슘을 합성하였다. 생성된 젖산칼슘의 수율은 칼사이트를 사용한 경우가 초기반응속도가 느림에도 불구하고 최종수율은 더 높게 나타났으며, 칼사이트와 아라고나이트 모두 반응온도 $60^{\circ}C$까지 수율이 증가하였으며 그 이상의 온도에서는 감소하였다. 이때의 최고수율은 아라고나이트 사용한 경우 85.0%, 칼사이트를 사용한 경우 88.7%를 나타내었다. 또한 젖산용액의 농도별 실험결과, 젖산용액의 농도가 2.0 mol% 이상으로 증가함에 따라 젖산 용액의 점도가 증가하여 물질전달이 이루어지지 않아 젖산칼슘의 수율은 감소하였다. 또한 생성된 젖산칼슘의 분석을 위해 SEM 및 FT-IR 분석을 실시하였으며, 그 결과 생성된 젖산칼슘은 반응조건에 상관없이 일정한 판상형의 결정임을 알 수 있었다.