• Title/Summary/Keyword: 탄산염

Search Result 652, Processing Time 0.022 seconds

The effect of the matrix thickness on the long term performance of MCFC (매트릭스 두께가 MCFC 장기 성능에 미치는 영향)

  • Kim, Yun-Young;Han, Jong-Hee;Yoon, Sung-Pil;Nam, Suk-Woo;Lim, Tae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.170-179
    • /
    • 2005
  • Electrolyte loss is considered as one of the major obstacles limiting the life time of molten carbonate fuel cells (MCFCs). Unit cells with an effective area of 100 $cm^2$ were prepared and were operated to determine the optimum matrix thickness which contains the maximum amount of electrolyte without serious preformance loss caused by high resistance. Matrices with different thickness, 1.45, 1.8, and 2.3 mm, were used in unit cells and those cells were operared about 5000, 10000, and 4000 hrs. The unit cell used 1.8 mm thick matrix showed 0.85 V (at 150 mA/$cm^2$) as the intial performance and this cell voltage is not lower than the cell voltage obtained in the cell with 1 mm thick matrix. This cell was operated for 10000 hrs. The cell used 1.45 mm thick matrices showed 16.6 % in the electrolyte loss after 5000 hr operation. In the case of the cell with 2.3 mm thick matrix, the initial cell voltage was below 0.80 V (at 150 mA/$cm^2$). For thermal cycle test, the gas crossover amount of unit cell used 1.8 mm thick matrix was much less than that of the cell with 1.0 mm thick matrix.

Development of Large-scale Ni-Al Alloy Fabrication Process at Low Temperature (대용량 저온 Ni-Al 합금 분말 제조 공정 개발)

  • LEE, MIN JAE;KANG, MIN GOO;JANG, SEONG-CHEOL;HAM, HYUNG CHUL;AHN, JOONG WOO;NAM, SUK WOO;YOON, SUNG PIL;HAN, JONGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.64-70
    • /
    • 2018
  • In this study, the kg-class Ni-Al alloy fabrication process at low temperature was developed from the physical mixture of Ni and Al powders. The AlCl3 as an activator was used to reduce the temperature of alloy synthesis below the melting temperature of Ni and Al elements (<$500^{\circ}C$). Mixed phase of Ni3Al intermetallic and Ni-Al solid-solution were identified in the XRD pattern analysis. Furthermore, from the analysis of SEM and particle size analyzer, we found that the particle size of synthesized alloy powders was not changed compared to the initial size of Ni particle after the formation of alloy powder at $500^{\circ}C$. In the creep test, the anode (which was fabricated by the prepared Ni-Al alloy powders in this study) displayed the enhanced creep resistance compared to the conventional anode.

Evaluation of Penetrating and Reinforcing Agent for Preventing Deterioration of Concrete (표면 침투 보강제에 의한 콘크리트 열화 방지 성능 평가)

  • Cho, Myung-Sug;No, Jae-Myoung;Song, Young-Chul;Kim, Do-Gyum
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.475-482
    • /
    • 2007
  • The property and applicability of the organic-inorganic synthesized penetrating and reinforcing agent, which is developed in order to improve durability of concrete structures and prevent deterioration that may occur as service years increased, are researched with experimental works. TEOS (tetra-ethoxyorthosilicate) and acrylate monomer are synthesized by the solution polycondensation method in order to formulate silicate with sol-gel process and improve durability of concrete. Additional substances such as isobutyl-orthosilicate is supplemented in order to improve the performance of the agent. After the developed organic-inorganic penetrating reinforcing agent penetrates, a flexible impact alleviating layer is formed with organic monomers as well as the agent strengthens concrete by filling up the internal pore of concrete with stable compounds after penetration. Penetrating and reinforcing agent can be applied as an effective life management method because it makes concrete more durable against the aging factors, such as chloride ion, carbonation, freezing-thawing, and compound aging.

Hydrochemistry of Groundwater in the Uraniferous Sedimentary Rocks of the Ogcheon Belt, Republic of Korea (옥천대 우라늄 광화대 부근 퇴적암 지하수의 수리화학적 특성)

  • Hwang, Jeong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.205-213
    • /
    • 2010
  • A hydrochemical comparative study of groundwater in uraniferous sedimentary rock of the Ogcheon belt was carried out to investigate the genetic relationship between uraniferous groundwater of Daejeon area and uraniferous sedimentary rocks of the Ogcheon zone. The groundwater shows weak alkaline pH values rangingfrom 6.4 to 8.1 and low Eh values ranging from -50 to 225 mV. The groundwaters to Ca-$HCO_3$ type that shows high concentration of $Ca^{2+}$ and $HCO_3^_$ due to the dissolution of carbonate mineral in limestone. The concentration of uranium in the groundwater was measured very low below $3.2{\mu}g/L$, while it was detected as much as $1165{\mu}g/L$ in the mine waste water. The low Eh value of groundwater is one of the main causes of low uranium concentration of groundwater in uraniferous sedimentary rocks in the Ogcheon belt. It is suggested that the uranium of groundwater in granitic region of Daejeon area was not mainly provided from uraniferous sedimentary rocks in the Ogcheon belt.

A Study on the Detergency Performance of Zeolite A in the Detergent Solution (세제용액 중에서 Zeolite A의 세정성능에 관한 연구)

  • Kang, Yun-Seog;Kim, Hyun-Chang;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.624-630
    • /
    • 1997
  • Zeolite A helps an increase of detergency performance according to showing the ion exchange effect for polyvalant ions and it's detergency performance could be calculated quantitatively by using the disperse stabilization theory because it is water-insoluble material and is as colloid particles in aqueous solution. In this study, zeta potential of carbon black, cellulose, and Zeolite A were measured in each inorganic salt solutions and applied to the theory of Heterocoagulation in order to evaluate the detergency performance of Zeolite A about the particulate soil at the view point of interaction potential energy. Zeolite A was shown help an increase of detergency performance according to the increasing of the steric repulsion between Zeolite A and cellulose in $Na2CO_3$ solution and the decrease of re-deposition of carbon black on the fabric by rapid coagulation with carbon black in $Na_2SO_4$ solution.

  • PDF

Textures, Mineralogy and Genesis of Manganese Nodules on the Blake Plateau, Northwestern Atlantic Ocean (북대서양상(北大西洋上)의 망간단괴(團塊)의 조직(組織), 광물(鍵物) 및 성인(成因))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 1981
  • The manganese nodule from the Blake Plateau consists mainly of microcrystalline to cryptocrystalline todorokite, with minor quartz, clays, carbonates and phillipsite. The nodule in cross section shows concentric layers, core structure, unconformity and fissure-filling structure megascopically, and colloform, fragmental and diagenetic textures microscopically. A new classification of colloform textures which are applicable to any nodule of any source shows that the colloform textures consist of three basic textural units: banded, cuspate and globular. They occur independently or in combination with each other to form various types of textures. The presence of three predominant textural types suggests that there are three different major modes of nodule growth which are controlled by physical and chemical environments.

  • PDF

Preparation and Sintering of YAG Powder Prepared by Precipitation (침전법을 이용한 YAG분말의 합성 및 소결)

  • 하성민;이재홍;박준영;심수만
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.190-196
    • /
    • 2004
  • Yttrium Aluminum Garnet (YAG) powders were synthesized by precipitation of solutions of Al and Y nitrates using ammonium hydrogen carbonate as a precipitant. Y$_2$O$_3$ and YAG phases were formed in the precipitates, which had been attrition-milled. Well-crystallized, phase-pure YAG powders were obtained after calcination of the milled precipitates at 1100$^{\circ}C$ for 1 h. The powders were found to exhibit an excellent sinterability regardless of the addition of SiO$_2$(500 ppm Si) as a sintering aid. All samples already densified to relative densities greater than 70% at 1300$^{\circ}C$ and relative densities of ∼83% at 1400$^{\circ}C$. The samples doped with SiO$_2$ showed a little improvement in densification as compared with those for the undoped samples and resulted in a relative density of 97% at 1600$^{\circ}C$.

A Study on Effect of Thermal Decomposition Products of Coal on Anodic Reactions in Direct Carbon Fuel Cell (석탄 열분해 생성물이 직접탄소연료전지에서 애노드 반응에 미치는 영향에 대한 연구)

  • Rhie, Young Hoon;Eom, Seong Yong;Ahn, Seong Yool;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.413-420
    • /
    • 2013
  • Effect of inherent volatile matters in fuels on electrochemical reactions of anode was investigated for a single direct carbon fuel cell (DCFC). Raw coals used as power source in the DCFC release light gases into the atmosphere under the operating temperature of DCFC ($700^{\circ}C$) by thermal decomposition and only char remained. These exhausted gases change the gas composition around anode and affect the electrochemical oxidation reaction of system. To investigate the effect of produced gases, comparative study was conducted between Indonesian sub-bituminous coal and its char obtained through thermal treatment, carbonizing. Maximum power density of raw coal ($52mW/cm^2$) was appeared higher than that of char ($37mW/cm^2$) because the gases produced from the raw coal during thermal decomposition gave additional positive results to electrochemical reaction of the system. The produced gases from coals were analyzed using TGA and FT-IR. The influence of volatile matters on anodic electrolyteelectrode interface was observed by the equivalent circuit induced from fitting of impedance spectroscopy data.

Operation Characteristics and Analysis of Temperature Gradients in a 5-kW Molten Carbonate Fuel Cell Stack (5 kW 용융탄산염 연료전지 스택내 운전특성 및 온도 변화 해석)

  • Lim, Hee-Chun;Koh, Joon-Ho;Ryu, Jeong In
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.107-118
    • /
    • 1999
  • A 5-kW MCFC stack with $3,000cm^2$ electrode area was tested to investigate cell performance and operation characteristics. The stack performance was evaluated based on electrical output and I-V change. The stack showed high cell performance (7.6 kW) than the design performance and operated for more than 5,760 hours, but a significant temperature gradient inside the stack was observed. A 3-dimensional mathematical model for molten carbonate fuel cell (MCFC) was developed for the purpose of simulation of stack performance during the operation. The model was solved using PHOENICS, a computational fluid dynamics (CFD) code. The simulation result demonstrated a close prediction of the temperature gradient and stack performance.

  • PDF

Performance Comparison of Integrated Reactor with Steam Reforming and Catalytic Combustion using Anode Off-Gas for High Temperature Fuel Cells (고온용 연료전지 미반응 가스를 이용한 촉매연소-개질 통합 반응기의 성능 비교)

  • Ghang, Tae-Gyu;Sung, Hae-Jung;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.800-809
    • /
    • 2011
  • The reaction characteristics of an integrated reactor with steam reformer and catalytic combustor using anode offgas for high temperature fuel cells such as MCFC and SOFC have been experimentally investigated in the present study. The coupled reactor had a coaxial cylindrical shape, and the inner and the outer tube was packed with combustion catalysts and reforming catalysts, respectively. Thus, the endothermic steam reforming could proceed by absorbing heat from catalytic combustion of anode offgas. Results show that increasing inlet temperature and decreasing excess air ratio increased the reformer temperature, which led to the increase in $H_2$ yield. The reforming performance for SOFC conditions was better than that for MCFC conditions since the composition of flammable components became smaller for MCFC cases. Measured reformate composition under various test conditions correlated well with thermal equilibrium composition.