• 제목/요약/키워드: 탄산가스 소비율

검색결과 2건 처리시간 0.013초

탄산가스 소비율을 고려한 $CO_2$농도 제어알고리즘 개발(I) (Development of $CO_2$ concentration control algorithm considering $CO_2$ consumption rate(I))

  • 진제용;홍순호;류관희;노상하
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1992년도 학술논문발표요지
    • /
    • pp.14-14
    • /
    • 1992
  • 시설원예에 있어서 작물의 생장량을 촉진시켜 수확시기를 앞당기고, 생산량을 증가시키며, 품질을 향상시키기 위하여 탄산가스를 시비하는 재배방법이 도입되고 있다. 그러나 탄산가스의 시비가 작물에 악영향을 주는 경우도 보고되고있어 탄산가스 시비에 주의를 기울여야 한다. 기존의 탄산가스 시비방법은 일정한 농도를 유지하는 것으로 탄산가스 낭비나 고농도에 의한 생육장애 혹은 탄산가스 결핍을 초래하는 등의 문제점을 갖고 있다. (중략)

  • PDF

작물의 생장정보 계측 및 생육제어에 관한 연구 I. 탄산가스 제어 알고리즘 개발 (On-line Measurement and Control of Plant Growth I. Development of $\textrm{CO}_2$ Control Algorithm)

  • 진제용;류관희;홍순호
    • 생물환경조절학회지
    • /
    • 제2권1호
    • /
    • pp.27-36
    • /
    • 1993
  • Carbon dioxide enrichment for greenhouse crops has generally been a standard commercial practice for many years. Vegetable crops such as tomato, cucumber, and lettuce respond positively to the $CO_2$ enrichment. But improper $CO_2$ enrichment leads to physiological damage and economical loss. This study was carried out to develop a $CO_2$ concentration control algorithm considering growth stage and efficiency. The measurand was $CO_2$ consumption rate and top fresh weight that represents growth stage. The weight of top fresh lettuce as a whole in the tray was measured through a non-destructive method. The demand in $CO_2$ concentration according to growth stage was investigated. The results are summarized as follows. 1. The $CO_2$ consumption rate could be measured within the error of $\pm$ 15.4mg$CO_2$/hr in the range of $CO_2$ concentration of 500-1500ppm. 2. The weight of top fresh lettuce could be measured within the error $\pm$ 4.3g in the range of 0-1400g. 3. The $CO_2$ control model developed could determine an economical $CO_2$ supply rate considering $CO_2$ consumption rate and leakage rate. 4. The $CO_2$ control algorithm based on the control model was composed of feedforward control for maintaining a stable $CO_2$ concentration level, and feedback control with $CO_2$ consumption rate and top fresh weight for adapting to the change in $CO_2$ demand by growth stage. 5. For the performance test with the developed control algorithm on lettuce the decrease in $CO_2$ supply rate was obtained without a significant decrease in top fresh weight.

  • PDF