• Title/Summary/Keyword: 타이어 접지폭 모델

Search Result 3, Processing Time 0.016 seconds

A Study on the Dynamic Wheel Loads of 3-D Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 동적 차륜하중에 관한 연구)

  • Chung, Tae Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • In this paper, research for dynamic wheel loads of 3-D vehicle model considering tire enveloping model is carried out. Heavy trucks with 2-axles and 3-axles are modeled by 7-d.o.f. and 8-d.o.f., in which contact length of tire and pitching of tandem spring axles is considered. Dynamic equations of vehicle are derived by using the Lagrange's equation and solution of the equation is calculated by 5th Runge-Kutter method. The validity of the developed 3-D vehicle model is demonstrated by comparing the results obtained by the present method and experimental data by Whittemore. The maximum impact factors of tire force are calculated when vehicle models of 8ton and 15ton dump truck are running on the different class roads with 1.0km and on the various step bump.

Dynamic Analysis of Highway Bridges by 3-D. Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 도로교의 동적해석)

  • Chung, Tae Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.989-999
    • /
    • 2006
  • In this paper, numerical analysis method to perform linear dynamic analysis of bridge considering the road surface roughness and bridge-vehicle interaction when vehicle is moving on bridge is presented. The vehicle and bridge are modeled as three-dimension where contact length of tire and pitching of tandem spring are considered and single truck with 2-axles and 3- axles, and tractor-trailer with 5-axles are modeled as 7-D.O.F., 8-D.O.F., and 14-D.O.F., respectively. Dynamic equations of vehicle are derived from the Lagrange's equation and solution of the equation is obtained by Newmark-${\beta}$ method. The surface roughness of bridge deck for this analysis is generated from power spectral density (PSD) function. Beam element for the main girder, shell element for concrete deck and rigid link between main girder and concrete deck are used. The equations of the motion of bridges are solved by mode-superposition procedures. The proposed procedure is validated by comparing the results with the experimental data by Whittemore and Fenves.

A Study on the Dynamic Response of Highway Bridges by 4-Axles Single Truck (4축 단일차량에 의한 도로교의 동적응답에 관한 연구)

  • Chung, Tae-Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.397-404
    • /
    • 2011
  • In this paper, a research for the dynamic wheel loads of a 3D vehicle model, which relates to a tire-enveloping model, is carried out. A single truck with four axles is modeled as a 10-D.O.F. vehicle by modeling both contact length of tires and pitching of tandem spring axles. The dynamic equations of the vehicle are obtained using the Lagrange's equation, the solution of the equations is calculated by Newmark-${\beta}$ method. The validity of the developed 3D vehicle model is demonstrated by comparing results obtained from the proposed method with those from experimental data. The maximum impact factors of tire force are evaluated according to the various step bumps on which a 24-ton dump truck is running.