• 제목/요약/키워드: 타이어 공기압

Search Result 62, Processing Time 0.086 seconds

Development of an Active Tire Pressure Control System Using a Tire Simulator (타이어 시뮬레이터를 이용한 능동형 타이어 공기압 제어 시스템 개발)

  • Lee, Kyu-Cheol;Ryu, Kwan-Hee;Rhee, Joong-Yong;Hong, Ji-Hyang;Kim, Hyeok-Joo;Yu, Ji-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • This study was performed to develop an active tire pressure control system that can adjust tire pressure to the optimum level according to traveling and working condition of agricultural tractor. For the development of active tire pressure control system, pneumatic supplier, solenoid valve block including pneumatic supply line, infinite rotation type pneumatic supplier with rotary joint unit, tire pressure transceiver module and control algorithm were developed. Also, tire simulator was developed. Using this tire simulator, the feasibility of each part constructing actual system was tested by checking the performance. The average communication success ratio was 98.3% between tire pressure transmitter and receiver module according to the various tire rotational speed and data receipt position of receiver module. The communication performance of the developed transmitter and receiver module was very stable in any condition. The tire pressure control system was accomplished by using the proportional control algorithm in this study. Also tire pressure control performance of developed control system was analyzed by using the tire simulator. As a result of control performance analysis to the developed system, the developed control system took 307 seconds to inflate agricultural tractor's tire from 50 kPa to 180 kPa. In opposite case, it took 210 seconds. Also it was able to control the tire pressure accurately under ${\pm}0.9%$ (FS) in any condition.

Structure Analysis of KHP Main & Nose Wheel (KHP Main & Nose Wheel 개발을 위한 구조해석)

  • Kim, Yong-Hwan;Lee, Sea-Wook;Ju, Young-Chan;Chi, Chong-Ho;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.330-335
    • /
    • 2012
  • This study performed the structure analysis for development and localization of main and nose wheel in Korean Helicopter Program(KHP). Structural stability of wheel is evaluated using ANSYS. Considering wheel and tire interface, Stress analysis was conducted by applying pneumatic of tire, static load, radial load and combined load on main and nose wheel. Considering yield strength at which plastic deformation occurs, simulation results suggest the method which increases structure stability after comparing maximum stress and yield strength.

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.

Ground Vibration Test of KF- 16D (KF-16D 지상진동시험)

  • Byun, Kwan-Hwa;Park, Chan-Yik;Kim, Jong-Heon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.41-49
    • /
    • 2005
  • This paper discusses the test procedure, instrumentation, verification methodology and the results of the ground vibration test(GVT) performed on the KF-16D aircraft to estimate experimentally dynamic characteristics of the aircraft. The modal tests for 7 external store configurations were conducted to estimate effects of external stores on the aircraft vibration modes. To emulate free-free boundary conditions the test aircraft was mounted on its landing gear structure with deflated tires during the GVT. The airframe modal tests were done by burst random excitations with 6 to 8 shakers and about 200 accelerometers. Frequency response functions(FRFs) were measured for each test, and the FRFs were reduced and analyzed to identify the dynamic parameters interested. The analyses were carried out in two steps. To extract modal parameters such as, frequencies and damping ratios, the poly-reference least square complex exponential method was used in the time domain. The mode shape coefficients were estimated with the least squares frequency domain method to identify the vibration modes.

The Effect of Ground Condition, Tire Inflation Pressure and Axle Load on Steering Torque (노면상태, 타이어 공기압 및 축하중이 조향력에 미치는 영향)

  • Park W. Y.;Kim S. Y.;Lee C. H.;Choi D. M;Lee S. S.;Lee K. S.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.419-424
    • /
    • 2004
  • In this study, a series of soil bin experiment was carried out to investigate experimentally the effect of the tire inflation pressure and axle load of tire on the steering torque for the off-road condition. The experiment was performed at the three levels of off-road conditions(ground I, ground II and ground III) and on-road condition(ground IV), four levels of tire inflation pressure(120 kPa, 170 kPa, 220 kPa and 270 kPa), and four levels of axle load(1470N, 1960N, 2450N and 2940N). The results of this study are summarized as follows: 1. Steering torque at the off-road conditions were higher than that on the on-road conditions for all levels of tire inflation pressure and axle load. 2. As the axle load increased, steering torque also increased f3r all experimental ground conditions. 3. For the axle load of 1470N the biggest steering torque was measured on the ground condition I, but as the axle load increased to the value of 2940N the biggest steering torque was measured on the ground condition III. From the above results, it was found that for the low axle load, steering torque gets higher on the soft ground condition, but for the high axle load, steering torque gets higher on hard ground condition for whole range of experimental conditions. 4. As the tire inflation pressure decreased, steering torque increased on the on-road condition, but no specific trend was not found at the off-road conditions.

Effects of Distribution of Axle Load and Inflation Pressure of Tires on Fuel Efficiency of Tractor Operations (차축의 중량 분포와 타이어의 공기압이 트랙터 작업의 연료 효율에 미치는 영향)

  • Lee, Jin-Woong;Kim, Kyeong-Uk;Gim, Dong-Hyeon;Choi, Kyu-Jeong
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.303-313
    • /
    • 2011
  • This study was conducted to investigate the effects of axle weight distribution and inflation pressure of tire on the fuel economy of tractors as well as operational range of tractor engine in terms of engine speed and power when a 4WD tractor of 38.2 kW rated power at 2500 rpm is used for plowing and flooded-field rotavating in paddy fields. (1) Plowing operation required an average engine power of 9.6~13.5 kW which equals 25~35% of rated PTO power. Engine speed ranged from 1,320.4 to 1,737.4 rpm, work velocity from 3.4 to 4.8 km/h, and fuel consumption from 3.2 to 4.2 L/h, respectively. (2) Flooded-field rotavating required an average engine power of 11.5~18.5 kW which equals 30~48.4% of rated PTO power. Out of this 6.2~12.2 kW was used for PTO power. Engine speed ranged from 1,557 to 2,067 rpm, work velocity from 2.5~5.4 km/h and fuel consumption from 3.2~5.5 L/h, respectively. (3) Axle weight distribution, inflation pressure of tire and moisture content of soil did not affect significantly the specific volumetric fuel consumption but affected significantly the fuel consumption per unit area of operation. Fuel savings amounted to 65% in plowing operation and 20% in flooded-field rotavating when the axle weight distribution and inflation pressure of tire were optimally adjusted. (4) Optimal adjustment of axle weight distribution and inflation pressure of tire are expected to save fuel consumption by 10~65% per unit area of operation in plowing and 10~20% in flooded-field rotavating.

Development of Rotational Type of Wheel-Based Electromagnetic Induction Energy Harvester by Using Orthogonal Array (직교 배열표를 이용한 휠 기반 회전형 전자기 유도 방식 에너지 하베스터 개발)

  • Park, Hyunchul;Moon, Yongjun;Kwon, Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.125-130
    • /
    • 2013
  • According to the law revision of TPMS mounting obligations in Korea, researches about energy harvester which is the alternative of the battery are actively performed by many groups. Because WSN (Wireless Sensor Network) has the proposition of "Install and forget" and the power supplier also has the same performance as the vehicle's lifetime. In this paper, electromagnetic induction type of energy harvester through the relative motion between the rotating wheel and the fixed brake disc is introduced by using the most efficient source as the rotating motion in the view of vehicle's mechanism. The coil on the wheel and the permanent magnet at the brake disc are arranged in several ways. These various arrangements are the number of coil turns are consisted of design variables. By using the orthogonal array to reduce the experimental cost, the optimal composition is verified through the experiment. Finally the validity of the module is considered by measuring the level of storable electrical energy.

Study on the In-Plane Vibration Characteristics of the Pneumatic Tires (공기압(空氣壓)타이어의 평면진동특성(平面振動特性)에 관(關)한 연구(硏究))

  • Kim, Nam Joen;Lee, Chong-Ho
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.9-15
    • /
    • 1987
  • The vibrational characteristics of a radial-ply (155SR13 4PR) and a biased-ply tire (6.15-134PR) were investigated for examining the effects of tires with different structure on the ride characteristics of the vehicle. The natural frequencies at the tread band, mode shapes, and damping factors of two tires at the state of plane vibration were determined experimentally. The test work was performed at four levels of the inflation pressure, ranging from 171.7 kPa to 245.2 kPa, and three levels of the vertical load, deviating by 10% from the standard load designated by the Department of Transportation of the United States of America. The following results were drawn by the analysis of the test results: 1. The first-order natural frequencies of the radial-ply and the biased-ply tires at the tread band were 112 Hz and 159 Hz, respectively, at the state o f the free vibration when the inflation pressure of 196.2 kPa was applied. It was known that the biased-ply tire has higher resonant frequency than the radial-ply tire and the natural frequencies of the both tires move to the high frequency range as t he inflation pressure is increased. 2. The vibration modes of both tires were quite different. No big difference in mode shapes was examined as the inflation pressure was increased. But the natural frequencies of two tires were changed. For the radial-ply tire, no difference in mode shape was found whether the vertical load was applied or not. But a significant difference in mode shape was examined for the biased-ply tire. 3. Any difference was not found in damping factor as the different inflation pressures were applied. 4. When no vertical load was applied, damping factors of the radial-ply and biased-ply tire at the state of the natural vibration ranged from 2.6 to 5.9%, and from 4.1 to 7.8%, respectively. It was estimated that the radial-ply tire would have better cushioning than the biased-ply tire since the vertical spring rate of the radial-ply tire was much less than that of the biased-ply tire, even though the damping effect of the radial-ply tire was smaller than that of the biased-ply tire.

  • PDF

A Study on Numerical Analysis of Flexible Pavements under Moving Vehicular Loads (차량의 이동하중을 고려한 연성포장의 수치해석 기법 연구)

  • Park, Seoksoon;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.206-219
    • /
    • 2011
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of numerical analysis. A 3-dimension finite element model was used to simulate each test section and a step loading approximation has been adopted to analyze the effect of a moving vehicle on pavement behaviors. For viscoelastic analysis, relaxation moduli, E(t), of asphalt mixtures were obtained from laboratory test. Field responses reveal the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains), and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

The Effect of Dynamic Load, Inflation Pressure and Number of Passes of Tire on Soil Compaction under the Tire (타이어의 동하중, 공기압 및 통과횟수가 토양다짐에 미치는 영향)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of three factors(dynamic load, inflation pressure and number of passes of tire) on soil compaction under the tire. The experiment were conducted with a 6.00R14 radial-ply tire for sandy loam soil using soil bin system. To evaluate the effect of three factors on soil compaction under the tire, the sinkage. density and volume of soil under the tire were measured fur the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.67kPa), and for three different number of passes(1, 3 and 5). The results of this study can be summarized as follows : 1. As dynamic load, inflation pressure and number of passes of the tire increased, soil sinkage and density increased. and volume of soil decreased. Thus increase in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2. The effect of tire inflation pressure on sinkage. density and volume of soil under the tire was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load was more important factor affecting soil compaction in comparison to the inflation pressure of tire. 3. The effect of three different factors on sinkage, density and volume of soil decreased as the soil depth increase. Consequently, it was fecund that soil compaction at a shallow depth in soil was larger than that at deep place in soil.