• Title/Summary/Keyword: 키-값 스토리지 엔진

Search Result 2, Processing Time 0.021 seconds

Design and Evaluation of an Efficient Flushing Scheme for key-value Store (키-값 저장소를 위한 효율적인 로그 처리 기법 설계 및 평가)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.187-193
    • /
    • 2019
  • Key-value storage engines are an essential component of growing demand in many computing environments, including social networks, online e-commerce, and cloud services. Recent key-value storage engines offer many features such as transaction, versioning, and replication. In a key-value storage engine, transaction processing provides atomicity through Write-Ahead-Logging (WAL), and a synchronous commit method for transaction processing flushes log data before the transaction completes. According to our observation, flushing log data to persistent storage is a performance bottleneck for key-value storage engines due to the significant overhead of fsync() calls despite the various optimizations of existing systems. In this article, we propose a group synchronization method to improve the performance of the key-value storage engine. We also design and implement a transaction scheduling method to perform other transactions while the system processes fsync() calls. The proposed method is an efficient way to reduce the number of frequent fsync() calls in the synchronous commit while supporting the same level of transaction provided by the existing system. We implement our scheme on the WiredTiger storage engine and our experimental results show that the proposed system improves the performance of key-value workloads over existing systems.

Design and Evaluation of a High-performance Key-value Storage for Industrial IoT Environments (산업용 IoT 환경을 위한 고성능 키-값 저장소의 설계 및 평가)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.127-133
    • /
    • 2021
  • In industrial IoT environments, sensors generate data for their detection targets and deliver the data to IoT gateways. Therefore, managing large amounts of real-time sensor data is an essential feature for IoT gateways, and key-value storage engines are widely used to manage these sensor data. However, key-value storage engines used in IoT gateways do not take into account the characteristics of sensor data generated in industrial IoT environments, and this limits the performance of key-value storage engines. In this paper, we optimize the key-value storage engine by utilizing the features of sensor data in industrial IoT environments. The proposed optimization technique is to analyze the key, which is the input of a key-value storage engine, for further indexing. This reduces excessive write amplification and improves performance. We implement our optimization scheme in LevelDB and use the workload of the TPCx-IoT benchmark to evaluate our proposed scheme. From experimental results we show that our proposed technique achieves up to 21 times better than the existing scheme, and this shows that the proposed technique can perform high-speed data ingestion in industrial IoT environments.