• Title/Summary/Keyword: 키 교환

Search Result 534, Processing Time 0.03 seconds

Synthesis of Na-A Type Zeolite and Its Ability to Adsorb Heavy Metals (Na-A형 제올라이트의 합성 및 중금속에 대한 흡착능)

  • Chae, Soo-Chun;Jang, Young-Nam;Bae, In-Kook;Lee, Sung-Ki;Ryou, Kyung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • This study was performed to synthesize Na-A type zeolite with melting slag from the Mapo incineration site and recycle the zeolite as an environmental remediation agent. The melting slag used had a favorable composition containing 26.6% $SiO_2$, 10.9% $Al_2O_3$ and 2.7% $Na_2O$ for zeolite synthesis although there were high contents of iron oxides, including 19.6% $Fe_2O_3$ and 18.9% FeO, which had been used as a flux for the melting. It was confirmed that the Na-A type zeolite could be successfully synthesized at $80^{\circ}C$ and $SiO_2/Al_2O_3\;=\;0.80{\sim}1.96$. The cation exchange capacities (CEC) of the zeolites was determined to be about 220 cmol/kg leveled off at the synthetic time more than 10hrs. The adsorption capacities of zeolite to heavy metals (Cd, Cu, Mn and Pb) were high except for As arid Cr. It was also confirmed through the Eh and pH analysis that As and Cr existed in the forms of $HAsO_4^{2-}$ and $CrO_4^{2-}$. The low absorption rates of zeolite for As and Cr are attributed to the fact that the pore size ($4\;{\AA}$) of Na-A type is smaller than those of $HAsO_4^{2-}$ and $CrO_4^{2-}$ ions ($4\;{\AA}$ ionic radii and $8\;{\AA}$ diameter).

Soil Testing for Potassium in Upland Soils -Review on the Methodologies- (밭토양(土壤)에 대(對)한 가리(加里) 검정(檢定))

  • Hong, Chong Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.153-170
    • /
    • 1977
  • Considering the ways for the possible improvement of soil test for upland crops, various methods for the evaluation of K supplying power and testing of available soil K were reviewed in terms of theoretical principles and practical usefulness of the each method. The review was also made on the characteristics of upland crops in K requirement and on the chemical properties of major korean upland and lowland rice soils in terms of K availability. Following is the few remarks drawn from the review. 1. Quite large number of methods have been known for the evaluation of K supplying power and testing for available soil K. In nature, they can be divided into two categories; capacity-based methods and intensity-based methcds. The capacity-based methods usually measure the exchangeable and some portion of nonexchangeable K, while the intensity-based methods suggest to consider the ractivity ratios of major cations in soil solution and the energy requirement for the replacement of exchangeable soil K into soil solution. 2. As methodology for extraction of interested part of soil K, chemical extraction, electrodialysis and ion exchange methods have been known. Among these, chemical extract ion is favorable because of its simplicity. However, recently suggested Electro-Ultra-Filtration method seems to merit further study for wider use for not only K but also other nutrient availability of soils. 3. The intensity-based methods, although they are more theoretical, because of their complexity, in methods may not be adapted for practical soil tests. 4. The exchangeable K which is rather simple to measure and which well reflects the status of K reserve as nonexchangeable and is immediate pool of water soluble K may be good, if not best, criterion of soil K availability to plant in common soil testing. 5. Because there are evidences that the abundance of available K alone may not be good inclication for availability of K to plant, it is recommendable to interprete the exchangeable K data as percent saturation of exchangeable K to total C. E. C. of soil for the recommend ation of K fertilizer based on soil tests. 6. Some pot and field trial results showed the trends that percent potassium saturation to total C. E. C. better serve as the parameter for K fertilizer recommendation.

  • PDF

Analysis of Modality and Procedures for CCS as CDM Project and Its Countmeasures (CCS 기술의 CDM 사업화 수용에 대한 방식과 절차 분석 및 대응방안 고찰)

  • Noh, Hyon-Jeong;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.263-272
    • /
    • 2012
  • Carbon dioxide, emitted by human activities since the industrial revolution, is regarded as a major contributor of global warming. There are many efforts to mitigate climate change, and carbon dioxide capture and geological storage (CCS) is recognized as one of key technologies because it can reduce carbon dioxide emissions from large point sources such as a power station or other industrial installation. The inclusion of CCS as clean development mechanism (CDM) project activities has been considered at UNFCCC as financial incentive mechanisms for those developing countries that may wish to deploy the CCS. Although the Conference of the Parties serving as the Meeting of the Parties to the UNFCCC's Kyoto Protocol (CMP), at Cancun in December 2010, decided that CCS is eligible as CDM project activities, the issues identified in decision 2/CMP.5 should be addressed and resolved in a satisfactory manner. Major issues regarding modalities and procedure are 1) Site selection, 2) Monitoring, 3) Modeling, 4) Boundaries, 5) Seepage Measuring and Accounting, 6) Trans-Boundary Effects, 7) Accounting of Associated Project Emissions (Leakage), 8) Risk and Safety Assessment, and 9) Liability Under the CDM Scheme. The CMP, by its decision 7/CMP.6, invited Parties to submit their views to the secretariat of Subsidiary Body for Scientific and Technological Advice (SBSTA), SBSTA prepared a draft modalities and procedure by exchanging views of Parties through workshop held in Abu Dhabi, UAE (September 2011). The 7th CMP (Durban, December 2011) finally adopted the modalities and procedures for CCS as CDM project activities (CMP[2011], Decision-/CMP.7). The inclusion of CCS as CDM project activities means that CCS is officially accredited as one of $CO_2$ reducing technologies in global carbon market. Consequently, it will affect relevant technologies and industry as well as law and policy in Korea and aboard countries. This paper presents a progress made on discussion and challenges regarding the issue, and aims to suggest some considerations to policy makers in Korea in order to demonstrate and deploy the CCS project in the near future. According to the adopted modalities and procedures for CCS as CDM project activities, it is possible to implement relevant CCS projects in Non-Annex I countries, including Korea, as long as legal and regulatory frameworks are established. Though Korea enacted 'Framework Act on Low Carbon, Green Growth', the details are too inadequate to content the requirements of modalities and procedures for CCS as CDM project. Therefore, it is required not only to amend the existing laws related with capture, transport, and storage of $CO_2$ for paving the way of an prompt deployment of CCS CDM activities in Korea as a short-term approach, but also to establish the united framework as a long-term approach.

Comparison of Treadmill and Cycle Ergometer in Male Korean College Students (한국 남자 대학생을 대상으로 시행한 Cardiopulmonary Exercise Test에서 Treadmill과 Cycle Ergometer의 비교 분석)

  • Chang, Yoon-Soo;Park, Jae-Min;Choi, Seung-Won;Ahn, Gang-Hyun;Lee, Jun-Gu;Yang, Dong-Kyu;Kim, Se-Kyu;Chang, Jun;Ahn, Chul-Min;Kim, Seong-Kyu;Lee, Won-Yong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.1
    • /
    • pp.26-34
    • /
    • 1999
  • Background : Generally $VO_2$ max is higher in treadmill exercise than cycle ergometer exercise. According to Hassen and Wasserman, $VO_2$ max with treadmill exercise is higher at ratio of 1.11 than that with cycle ergometer. $VO_2$ max also is influenced by race, sociocultural background, exercise habit In this study, $VO_2$ max and AT were evaluated between Treadmill and cycle exercise in male Korean college students. Method: Study subjects were 44 male college students. We randomized them into 2 groups; 24 students did treadmill exercise at first and 1 week later did cycle ergometer. Another 20 students did in opposite method. They made symptom limited maximal exercise. Author defined maximal exercise as followings: 1) respiratory exchange ratio(RER)> 1.1, 2) plateau>30 sec, 3) heart rate reserve(HRR) <15%, or 4) breathing reserve (BR)<30%. Otherwise their results are excluded as submaximal exercise. Anaerobic threshold(AT) was estimated by V-slope method. Results: $VO_2$ max and AT was $45.1{\pm}6.66m\ell$/kg/min and $26.0{\pm}6.78m\ell$/kg/min in treadmill and $34.9{\pm}5.89m\ell$/kg/min, $19.5{\pm}4.77m\ell$/kg/min in Cycle Ergometer. The measured-$VO_2max$/pred-$VO_2max$ was $98.8{\pm}13.24%$ in treadmill; $84.4{\pm}13.42%$ in cycle ergometer. Comparing $VO_2$ max in treadmill with that obtained by Hassen's method, there were significant differences.(p<0.01). At maximal exercise there were differences in HRR, $O_2$/pulse, BR, $V_E$/MVV, $V_E/VCO_2$ between treadmill and cycle but not in $V_E/VO_2$, Vd/Vt, Ti/Ttot. At AT there were differences in $O_2$/pulse, BR, $V_E$/MVV, Ti/Ttot between treadmill and cycle, otherwise not. Conclusion: According to the result of this study, there are larger gap between treadmill and cycle ergometer in normal Korean adults than foreign data, and it needs further study to obtain reference value of Korea.

  • PDF