• Title/Summary/Keyword: 키워드 추출

Search Result 754, Processing Time 0.026 seconds

An XML Keyword Indexing Method Using on Lexical Similarity (단락을 분류에 따른 XML 키워드 가중치 결정 기법)

  • Jeong, Hye-Jin;Kim, Hyoung-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.205-208
    • /
    • 2008
  • 보다 효과적인 키워드 추출 및 키워드 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 단락별 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하는게 일반적이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 일반적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 자동색인을 위하여, 논문을 구성하는 주요 단락을 세분하고, 단락에서 추출된 용어의 가중치를 갱신해 가면서 최종 색인어 가중치를 계산하는 방법을 제안한다.

  • PDF

LiveTwitter: Hot Issue Search system Based on Twitter (LiveTwitter: 트위터 기반 핫이슈 검색 시스템)

  • Sung, Byung-Ki;Oh, Jin-Young;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.179-182
    • /
    • 2010
  • 트위터, 페이스북 등의 소설 네트워크가 이슈가 되는 사건에 의견을 표시하는 수단으로 많이 활용되고 있다. 본 논문에서는 이슈 키워드 추출 및 트위터와 유투브에 기반한 실시간 검색 시스템을 구현한다. 본 시스템에서는 가장 최근 신문 기사들의 제목과 스니핏을 이용하여 이슈가 되는 키워드를 실시간으로 추출하여 사용자들에게 보여주고 트위터와 유투브 OpenAPI를 이용하여 추출된 키워드에 대한 컨텐츠들을 실시간으로 사용자들에게 보여준다, 본 시스템을 통해서 이슈가 되는 사건에 대한 실시간 반응을 찾을 수 있다.

  • PDF

A Methodology for Extracting Shopping-Related Keywords by Analyzing Internet Navigation Patterns (인터넷 검색기록 분석을 통한 쇼핑의도 포함 키워드 자동 추출 기법)

  • Kim, Mingyu;Kim, Namgyu;Jung, Inhwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.123-136
    • /
    • 2014
  • Recently, online shopping has further developed as the use of the Internet and a variety of smart mobile devices becomes more prevalent. The increase in the scale of such shopping has led to the creation of many Internet shopping malls. Consequently, there is a tendency for increasingly fierce competition among online retailers, and as a result, many Internet shopping malls are making significant attempts to attract online users to their sites. One such attempt is keyword marketing, whereby a retail site pays a fee to expose its link to potential customers when they insert a specific keyword on an Internet portal site. The price related to each keyword is generally estimated by the keyword's frequency of appearance. However, it is widely accepted that the price of keywords cannot be based solely on their frequency because many keywords may appear frequently but have little relationship to shopping. This implies that it is unreasonable for an online shopping mall to spend a great deal on some keywords simply because people frequently use them. Therefore, from the perspective of shopping malls, a specialized process is required to extract meaningful keywords. Further, the demand for automating this extraction process is increasing because of the drive to improve online sales performance. In this study, we propose a methodology that can automatically extract only shopping-related keywords from the entire set of search keywords used on portal sites. We define a shopping-related keyword as a keyword that is used directly before shopping behaviors. In other words, only search keywords that direct the search results page to shopping-related pages are extracted from among the entire set of search keywords. A comparison is then made between the extracted keywords' rankings and the rankings of the entire set of search keywords. Two types of data are used in our study's experiment: web browsing history from July 1, 2012 to June 30, 2013, and site information. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The original sample dataset contains 150 million transaction logs. First, portal sites are selected, and search keywords in those sites are extracted. Search keywords can be easily extracted by simple parsing. The extracted keywords are ranked according to their frequency. The experiment uses approximately 3.9 million search results from Korea's largest search portal site. As a result, a total of 344,822 search keywords were extracted. Next, by using web browsing history and site information, the shopping-related keywords were taken from the entire set of search keywords. As a result, we obtained 4,709 shopping-related keywords. For performance evaluation, we compared the hit ratios of all the search keywords with the shopping-related keywords. To achieve this, we extracted 80,298 search keywords from several Internet shopping malls and then chose the top 1,000 keywords as a set of true shopping keywords. We measured precision, recall, and F-scores of the entire amount of keywords and the shopping-related keywords. The F-Score was formulated by calculating the harmonic mean of precision and recall. The precision, recall, and F-score of shopping-related keywords derived by the proposed methodology were revealed to be higher than those of the entire number of keywords. This study proposes a scheme that is able to obtain shopping-related keywords in a relatively simple manner. We could easily extract shopping-related keywords simply by examining transactions whose next visit is a shopping mall. The resultant shopping-related keyword set is expected to be a useful asset for many shopping malls that participate in keyword marketing. Moreover, the proposed methodology can be easily applied to the construction of special area-related keywords as well as shopping-related ones.

A Study of Themes and Trends in Research of Global Maritime Economics through Keyword Network Analysis (키워드 네트워크 분석을 통한 세계 해운경제의 연구 주제와 동향에 대한 연구)

  • Jhang, Se-Eun;Lee, Su-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.1
    • /
    • pp.79-95
    • /
    • 2016
  • This study identifies themes and trends in maritime economics and logistics by examining 303 papers published in international journals from 2000 to 2014 using keyword network analysis. Network analysis can be used because the collected data follow Zipf's law and the power law. Utilizing the degree centrality and betweenness centrality, we find the important keywords in each five year period and determine the importance of shared keywords. To further explain keyword centralities, we invented a Delta-C algorithm to show the trends of keywords over time. We found that degree centrality is useful for identifying important research themes in each period because it is mainly concerned with the number of connections. On the other hands, betweenness centrality is useful to determine the unique themes that emerge in each of the specific periods.

An Effective Keyword Extraction Method Based on Web Page Structure Analysis for Video Retrieval in WWW (웹 페이지 구조 분석을 통한 효과적인 동영상 검색용 키워드 추출 방법)

  • Lee, Jong-Won;Choi, Gi-Seok;Jang, Ju-Yeon;Nang, Jong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.3
    • /
    • pp.103-110
    • /
    • 2008
  • This paper proposes an effective keyword extraction method for the Web videos. The proposed method classifies the Web video pages in one of 4 types. As such, we analyzed the structure of the Web pages based on the number of videos and the layout of the Web pages. And then we applied the keyword extraction algorithm fit to each page type. The experiment with 1,087 Web pages that have total 2,462 videos showed that the recall of the proposed extraction method is 18% higher than ImagerRover[2]. So, the proposed method could be used to build a powerful video search system for WWW.

Interactive Morphological Analysis to Improve Accuracy of Keyword Extraction Based on Cohesion Scoring

  • Yu, Yang Woo;Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.145-153
    • /
    • 2020
  • Recently, keyword extraction from social big data has been widely used for the purpose of extracting opinions or complaints from the user's perspective. Regarding this, our previous work suggested a method to improve accuracy of keyword extraction based on the notion of cohesion scoring, but its accuracy can be degraded when the number of input reviews is relatively small. This paper presents a method to resolve this issue by applying simplified morphological analysis as a postprocessing step to extracted keywords generated from the algorithm discussed in the previous work. The proposed method enables to add analysis rules necessary to process input data incrementally whenever new data arrives, which leads to reduction of a dictionary size and improvement of analysis efficiency. In addition, an interactive rule adder is provided to minimize efforts to add new rules. To verify performance of the proposed method, experiments were conducted based on real social reviews collected from online, where the results showed that error ratio was reduced from 10% to 1% by applying our method and it took 450 milliseconds to process 5,000 reviews, which means that keyword extraction can be performed in a timely manner in the proposed method.

A Scheme for Progressive Service of Retrieved Images based on Object Extraction and Grouping (객체 추출 및 객체별 그룹핑을 이용한 영상검색 결과의 단계적 서비스 방안)

  • 박창민;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.180-185
    • /
    • 2002
  • 본 논문에서는 키워드를 입력해 검색된 영상들을 유사한 특징을 갖는 소수의 그룹으로 그룹핑하고 각 그룹을 대표하는 대표영상을 추출하여 우선적으로 사용자에게 보여주고 필요에 따라 나머지 영상들을 단계적으로 서비스할 수 있는 방안을 제시한다. 영상 그룹핑을 위한 각 영상의 특징은 영상에 포함된 중심 객체를 사용하여 추출한다. 이를 위해 검색 키워드는 객체와 연관성이 있는 단어로 제한하여 영상을 검색하며 검색된 영상으로부터 중심 객체를 추출할 수 있는 객체 추출 방법을 활용하였다. 각 영상으로부터 추출된 중심 객체에 대한 특징 벡터는 칼라 분포를 이용한다. 영상 그룹핑은 칼라분포로 표현되는 특징공간에서의 밀집도를 조사하여 높은 밀도로 모여있는 영역별로 추출하여 동일한 그룹으로 분류하였다. 대표 영상은 분류된 그룹에서 가장 밀집도가 높은 영상으로 선택된다. 한편, 얼굴이 포함된 영상은 사전에 따로 분류하고 얼굴 크기 및 얼굴 수에 따라 영상을 그룹핑하여 각 그룹에 대한 대표 영상을 선정한다. 본 연구에서 제안한 방법은 사용자에게 모든 검색 결과를 일괄적으로 보여주는 것에 비해 보다 빠른 시간 내에 사용자가 원하는 영상을 편리하면서도 효과적으로 확인할 수 있는 방법을 제공해 줄 수 있을 것으로 기대한다.

  • PDF

Analysis on the author keywords in the scientific articles (과학기술 논문의 저자 키워드 분석)

  • Kim, Tae-Jung;Lee, Seok-Hyoung;Kim, Kwang-Young;Kim, Hwanmin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.53-54
    • /
    • 2014
  • 대부분 국내에서 발행되는 과학기술 분야의 논문에는 저자 키워드가 포함되어 있다. 이 키워드는 논문을 이해를 돕고 온라인 검색에 유용하게 활용되고 있다. 특히 많은 논문에서 키워드를 영문과 국문을 동시에 부여하도록 하고 있어 과학기술 용어로서의 가치도 있다. 일정 기간 국내에서 발행되는 논문으로부터 저자 키워드들을 추출하여 다양한 각도에서 부여 키워드의 현황을 분석하였다. 결론으로 바람직한 키워드 부여의 방향을 제시한다.

  • PDF

Trend Analysis of Repercussion Effect of Foot-and-Mouth Disease Using Keyword Network (키워드 네트워크를 이용한 구제역 파급효과의 트렌드 분석)

  • Noh, Byeongjoon;Xu, Zhenshun;Lee, Jonguk;Park, Daihee;Chung, Yonghwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.330-333
    • /
    • 2016
  • 최근 구제역의 발생으로 인해 농 축산업계 및 관련 산업분야에 막대한 피해를 야기함에 따라, 구제역의 발병에 따른 다양한 사회적 파급효과의 분석이 필요하다. 본 논문에서는 온라인 뉴스를 대상으로 텍스트 마이닝 방법들을 사용하여 구제역으로 인한 경제적, 환경적, 그리고 정책적 파급효과를 분석하는 공학적 방법론을 제안한다. 제안하는 시스템은 먼저, 구제역 관련 온라인 뉴스를 수집한 후, 토픽 모델링의 대표적인 방법 중 하나인 LDA(Latent Dirichlet Allocation)를 활용하여 뉴스 기사로부터 키워드들을 추출한다. 둘째, 추출된 키워드들로부터 구제역으로 인한 파급효과의 분석을 위해 동시출현 키워드 네트워크를 구성한다. 셋째, 키워드 네트워크 타임라인을 통해 각 파급효과들의 변화를 분석한다. 마지막으로, 사례분석을 통해 2010년 7월부터 2011년 12월까지 한국에서 발생한 구제역으로 인한 사회적 파급효과의 분석을 수행하였다.

Sentiment Analysis of Foot-and-mouth Disease using Tweet Keyword Network (트윗 키워드 네트워크를 이용한 구제역의 감성분석)

  • Chae, Heechan;Lee, Jonguk;Choi, Yoona;Park, Daihee;Chung, Yongwha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.267-270
    • /
    • 2018
  • 구제역으로 인하여 국내 축산업계 및 관련 산업분야는 매년 막대한 피해를 입고 있다. 구제역과 관련한 다양한 학술적 연구들이 현재 진행되고는 있으나, 구제역의 발병에 따른 사회적 파급효과에 관한 공학적 분석 연구는 매우 제한적이다. 본 연구에서는 구제역에 관한 일반 시민들의 감성적 반응을 텍스트 마이닝 방법론을 사용하여 분석하는 체계적인 방법론을 제안한다. 제안하는 시스템은 먼저, 트위터에 게시된 트윗 중 구제역과 관련된 데이터를 수집한 후, 감성사전을 기반으로 극성탐지 과정을 거친다. 둘째, 토픽 모델링의 대표적인 기법 중 하나인 LDA를 활용하여 트윗으로 부터 키워드들을 추출하고, 추출된 키워드들로부터 극성별 동시출현 키워드 네트워크를 구성한다. 셋째, 키워드 네트워크을 통해 각 구간별 구제역의 사회적 파급효과를 분석한다. 사례 분석으로써, 2010년 7월부터 2011년 12월까지 국내에서 발생한 구제역에 관한 일반 시민들의 감성적 변화를 분석하였다.