• Title/Summary/Keyword: 키워드 리뷰

Search Result 67, Processing Time 0.025 seconds

Keyword Extraction and Visualization of Movie Reviews through Sentiment Analysis (영화 리뷰 감성 분석을 통한 키워드 추출 및 시각화)

  • Jong-Chan Park;Sung Jin Kim;Young Hyun Yoon;Jai Soon Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.261-262
    • /
    • 2023
  • 본 연구에서는 감성 분석 기반의 키워드 도출형 영화 리뷰 웹사이트를 개발하였다. 사용자들은 영화에 대한 리뷰를 작성할 때, 자동으로 키워드를 추출하는 기능을 활용하여 다양하면서도 빠르게 정보를 얻을 수 있다. 사용자가 작성한 리뷰를 시스템에 입력하면, 내부적으로 ChatGPT를 활용하여 텍스트를 분석하고 키워드를 추출한다. 이를 통해 사용자는 별다른 노력 없이도 키워드를 통해 영화의 장르, 감독, 배우, 플롯 요소 등 다양한 정보를 빠르게 확인할 수 있다. 추출된 키워드는 저장되어 시각화에 활용되며, 사용자들은 리뷰에 대한 원하는 정보를 쉽게 얻을 수 있다. 개발된 키워드 도출형 영화 리뷰 웹사이트는 사용자들에게 빠르고 다양한 정보를 제공하며, 영화 관련 결정을 내리는 데에 도움을 줄 것으로 기대된다.

  • PDF

A Movie Recommendation System using Individual Review and Meta Data (개인 리뷰를 이용한 영화추천 시스템)

  • Kim, Min-Jeong;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1611-1614
    • /
    • 2015
  • 최근 많은 추천 시스템들이 연구 되고 있으며, 사용자들에게 의사결정을 도와주는 추천시스템에 대한 중요도가 급증하고 있다. 기존의 영화 추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 이러한 문제를 보완하고자 사용자가 영화에 대해 남긴 리뷰로부터 영화키워드를 분석하고 분석된 키워드로부터 가중치를 활용한다. 즉 사용자들로부터 영화에 대한 리뷰를 수집하고 리뷰로부터 각 영화 키워드를 분석해 키워드별 가중치를 활용해 이를 기반으로 영화를 추천한다. 그 결과 사용자에게 만족할만한 정보를 제공해 효율성을 높이고, 영화에 대한 개인 리뷰를 반영한 영화추천 시스템을 설계 및 구현해 사용자에게 적절한 영화를 추천한다.

Identification of sentiment keywords association-based hotel network of hotel review using mapper method in topological data analysis (Topological Data Analysis 기법을 활용한 호텔 리뷰데이터의 감성 키워드 기반 호텔 관계망 구축)

  • Jeon, Ye-Seul;Kim, Jeong-Jae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • Hotel review data can extract various information that includes purchasing factors that lead to consumption, advantages, and disadvantages for hotels. In particular, the sentiment keyword of the review data helps consumers understand the pros and cons of hotels. However, it is not efficient for consumers to read a large number of reviews. Therefore, it is necessary to offer a summary review to customers. In this study, we suggest providing summary information on sentiment keywords association as well as a network of hotels based on sentiment keywords. Based on a sentiment keyword dictionary, the extracted sentiment keywords associations construct the hotel network through topological data analysis based mapper. This hotel network allows a consumer to find some hotels associated with specific sentiment keywords as well as recommends the same related hotels. This summary information provides users with a summarized emotional assessment of hotels and helps hotel marketing teams understand consumers' perceptions of their hotel.

Keyword Extraction Technique for Attractions using Online Reviews - Topic Modeling and Markov Chain (온라인 리뷰를 활용한 관광지 키워드 추출 기법 - 토픽 모델링과 Markov Chain)

  • Kim, MyeongSeon;Lee, KangWoo;Lim, JiWon;Hong, Soon-Goo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.521-523
    • /
    • 2021
  • 관광 분야에서 온라인 리뷰의 중요성이 커지고 있다. 온라인 리뷰의 텍스트 데이터는 파악이 어렵다. 이에 본 연구에서는 특정 관광지에 대한 온라인 리뷰 텍스트 데이터가 나타내는 전반적인 의견을 직관적으로 도출하는 방법에 대해 알아보고자, 토픽 모델링과 Markov Chain을 시행했다. '해운대'에 대한 온라인 리뷰를 수집한 후, LDA와 BTM을 활용하여 주제를 도출하고, Markov Chain을 시각화하여 키워드 간의 관계와 전체적인 평가 내용을 확인했다. 사용된 기법은 각자 특징적인 결과를 제시했기 때문에 다양한 기법을 상보적으로 이용하기를 제안하였다.

Interactive Morphological Analysis to Improve Accuracy of Keyword Extraction Based on Cohesion Scoring

  • Yu, Yang Woo;Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.145-153
    • /
    • 2020
  • Recently, keyword extraction from social big data has been widely used for the purpose of extracting opinions or complaints from the user's perspective. Regarding this, our previous work suggested a method to improve accuracy of keyword extraction based on the notion of cohesion scoring, but its accuracy can be degraded when the number of input reviews is relatively small. This paper presents a method to resolve this issue by applying simplified morphological analysis as a postprocessing step to extracted keywords generated from the algorithm discussed in the previous work. The proposed method enables to add analysis rules necessary to process input data incrementally whenever new data arrives, which leads to reduction of a dictionary size and improvement of analysis efficiency. In addition, an interactive rule adder is provided to minimize efforts to add new rules. To verify performance of the proposed method, experiments were conducted based on real social reviews collected from online, where the results showed that error ratio was reduced from 10% to 1% by applying our method and it took 450 milliseconds to process 5,000 reviews, which means that keyword extraction can be performed in a timely manner in the proposed method.

A Visualization of Movie Reviews based on a Semantic Network Analysis (의미연결망 분석을 활용한 영화 리뷰 시각화)

  • Kim, Seulgi;Kim, Jang Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • This study visualized users reaction about movies based on keywords with high frequency. For this work, we collected data of movie reviews on . A total of six movies were selected, and we conducted the work of data gathering and preprocessing. Semantic network analysis was used to understand the relationship among keywords. Also, NetDraw, packaged with UCINET, was used for data visualization. In this study, we identified the differences in characteristics of review contents regarding each movie. The implication of this study is that we visualized movie reviews made by sentence as keywords and explored whether it is possible to construct the interface to check users' reaction at a glance. We suggest that further studies use more diverse movie reviews, and the number of reviews for each movie is used in similar quantities for research.

Efficient Keyword Extraction from Social Big Data Based on Cohesion Scoring

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.87-94
    • /
    • 2020
  • Social reviews such as SNS feeds and blog articles have been widely used to extract keywords reflecting opinions and complaints from users' perspective, and often include proper nouns or new words reflecting recent trends. In general, these words are not included in a dictionary, so conventional morphological analyzers may not detect and extract those words from the reviews properly. In addition, due to their high processing time, it is inadequate to provide analysis results in a timely manner. This paper presents a method for efficient keyword extraction from social reviews based on the notion of cohesion scoring. Cohesion scores can be calculated based on word frequencies, so keyword extraction can be performed without a dictionary when using it. On the other hand, their accuracy can be degraded when input data with poor spacing is given. Regarding this, an algorithm is presented which improves the existing cohesion scoring mechanism using the structure of a word tree. Our experiment results show that it took only 0.008 seconds to extract keywords from 1,000 reviews in the proposed method while resulting in 15.5% error ratio which is better than the existing morphological analyzers.

Automatic Background Keyword of Movie Extraction Method from Media Reviews (미디어 리뷰를 이용한 영화 배경 키워드 자동 추출 기법)

  • Kim, Hyung W.;Cho, Joonmyun;Yoo, Jeongju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1149-1151
    • /
    • 2013
  • 본 연구는 영화 콘텐츠의 배경(공간적/시간적)에 해당하는 키워드를 자동으로 추출하는 기법을 제안한다. 제안된 기법은 영화 콘텐츠들의 리뷰 텍스트 데이터를 웹 상으로부터 수집하는 과정, 수집된 텍스트 리뷰 데이터의 전처리 과정에 해당하는 형태소 분석 및 개체명인식 과정, 마지막으로 통계적 기법을 이용하여 최종적으로 배경에 해당하는 단어를 선택하는 과정으로 이루어진다. 자동으로 추출된 배경 정보는 사용자 평가를 통하여 정확도를 측정하였으며, 자동 생성된 배경 정보를 이용하여 영화 콘텐츠의 검색 및 추천 등에 다양하게 사용될 수 있을 것으로 예상된다.

Analysis of User Reviews of Running Applications Using Text Mining: Focusing on Nike Run Club and Runkeeper (텍스트마이닝을 활용한 러닝 어플리케이션 사용자 리뷰 분석: Nike Run Club과 Runkeeper를 중심으로)

  • Gimun Ryu;Ilgwang Kim
    • Journal of Industrial Convergence
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2024
  • The purpose of this study was to analyze user reviews of running applications using text mining. This study used user reviews of Nike Run Club and Runkeeper in the Google Play Store using the selenium package of python3 as the analysis data, and separated the morphemes by leaving only Korean nouns through the OKT analyzer. After morpheme separation, we created a rankNL dictionary to remove stopwords. To analyze the data, we used TF, TF-IDF and LDA topic modeling in text mining. The results of this study are as follows. First, the keywords 'record', 'app', and 'workout' were identified as the top keywords in the user reviews of Nike Run Club and Runkeeper applications, and there were differences in the rankings of TF and TF-IDF. Second, the LDA topic modeling of Nike Run Club identified the topics of 'basic items', 'additional features', 'errors', and 'location-based data', and the topics of Runkeeper identified the topics of 'errors', 'voice function', 'running data', 'benefits', and 'motivation'. Based on the results, it is recommended that errors and improvements should be made to contribute to the competitiveness of the application.