• Title/Summary/Keyword: 클램핑력

Search Result 6, Processing Time 0.023 seconds

Development of Clamping Force Estimation Algorithm and Clamp-force Sensor Calibration on Electromechanical Brake Systems (전동식 브레이크 시스템의 클램핑력 센서 교정 및 클램핑력 추정 알고리즘 개발)

  • Park, Giseo;Choi, Seibum;Hyun, Dongyoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.365-371
    • /
    • 2016
  • The electromechanical brake (EMB) is one of future brake systems due to its many advantages. For implementation of the EMB, the correct feed back about clamping force is necessary. Keeping commercialization of the EMB in mind, it is strongly demanded that an expensive load cell measuring the clamping force is replaced with an estimation algorithm. In addition, an estimation of the kissing point where the brake pads start to come into contact with a disk wheel is proposed in this paper. With these estimation algorithms, the clamping force can be expressed as a polynomial characteristic curve versus the motor angle. Also, a method for calibration of measured values by the load cell is proposed and used for an actual characteristic curve. Lastly, the performance of the proposed algorithms is evaluated in comparison with the actual curve on a developed EMB test bench.

Development of the Design Algorithm Using the Equivalent Magnetic Circuit Method for Colenoid Type Electromagnetic Linear Actuator (등가자기회로를 활용한 콜레노이드 타입 선형 액츄에이터 설계 알고리즘 개발)

  • Han, Dong-Ki;Chang, Jung-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.55-61
    • /
    • 2016
  • This study proposes the design algorithm of an electromagnetic linear actuator with a divided coil excitation system, such as the colenoid (COL) system, using the equivalent magnetic circuit (EMC) method. Nowadays, the clamping device is used to hold workpiece in the electrically driven chucking system and is needed to produce a huge clamping force of 40 kN like hydraulic system. The design algorithm for electromagnetic linear actuator can be obtained using the EMC method. At first, the parameter map is used to decide the slot width ratio in the initial design. Next, to make the magnetic flux density uniform at each pole, the pole width is adjusted by the pole width adjusting algorithm with EMC. When the dimensions of the electromagnetic linear actuator are decided, the clamping force is calculated to check the desired clamping force. The design results show that it can be used to hold a workpiece firmly instead of using a hydraulic cylinder in a chucking system.

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1) (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1))

  • Hwang Young-Kug;Chung Won-Jee;Lee Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System (Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.

Current and Force Sensor Fault Detection Algorithm for Clamping Force Control of Electro-Mechanical Brake (Electro-Mechanical Brake의 클램핑력 제어를 위한 전류 및 힘 센서 고장 검출 알고리즘 개발)

  • Han, Kwang-Jin;Yang, I-Jin;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1145-1153
    • /
    • 2011
  • EMB (Electro-Mechanical Brake) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor current and force sensor faults in EMB systems. A state-space model for the EMB is derived including faulty signals. The fault diagnosis algorithm is constructed using the analytical redundancy method. Observer is designed for the EMB and the fault detectability condition is examined based on the residual analysis. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구)

  • Hwang Y.K.;Cho Y.D.;Lee C.M.;Chung W.J
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF