• Title/Summary/Keyword: 클래스 불균형 분류

Search Result 57, Processing Time 0.036 seconds

Ensemble Composition Methods for Binary Classification of Imbalanced Data (불균형 데이터의 이진 분류를 위한 앙상블 구성 방법)

  • Yeong-Hun Kim;Ju-Hing Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.689-691
    • /
    • 2023
  • 불균형 데이터의 분류의 성능을 향상시키기 위한 앙상블 구성 방법에 관하여 연구한다. 앙상블의 성능은 앙상블을 구성한 기계학습 모델 간의 상호 다양성에 큰 영향을 받는다. 기존 방법에서는 앙상블에 속할 모델 간의 상호 다양성을 높이기 위해 Feature Engineering 을 사용하여 다양한 모델을 만들어 사용하였다. 그럼에도 생성된 모델 가운데 유사한 모델들이 존재하며 이는 상호 다양성을 낮추고 앙상블 성능을 저하시키는 문제를 가지고 있다. 불균형 데이터의 경우에는 유사 모델 판별을 위한 기존 다양성 지표가 다수 클래스에 편향된 수치를 산출하기 때문에 적합하지 않다. 본 논문에서는 기존 다양성 지표를 개선하고 가지치기 방안을 결합하여 유사 모델을 판별하고 상호 다양성이 높은 후보 모델들을 앙상블에 포함시키는 방법을 제안한다. 실험 결과로써 제안한 방법으로 구성된 앙상블이 불균형이 심한 데이터의 분류 성능을 향상시킴을 확인하였다.

Development of machine learning model for reefer container failure determination and cause analysis with unbalanced data (불균형 데이터를 갖는 냉동 컨테이너 고장 판별 및 원인 분석을 위한 기계학습 모형 개발)

  • Lee, Huiwon;Park, Sungho;Lee, Seunghyun;Lee, Seungjae;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • The failure of the reefer container causes a great loss of cost, but the current reefer container alarm system is inefficient. Existing studies using simulation data of refrigeration systems exist, but studies using actual operation data of refrigeration containers are lacking. Therefore, this study classified the causes of failure using actual refrigerated container operation data. Data imbalance occurred in the actual data, and the data imbalance problem was solved by comparing the logistic regression analysis with ENN-SMOTE and class weight with the 2-stage algorithm developed in this study. The 2-stage algorithm uses XGboost, LGBoost, and DNN to classify faults and normalities in the first step, and to classify the causes of faults in the second step. The model using LGBoost in the 2-stage algorithm was the best with 99.16% accuracy. This study proposes a final model using a two-stage algorithm to solve data imbalance, which is thought to be applicable to other industries.

Improved Focused Sampling for Class Imbalance Problem (클래스 불균형 문제를 해결하기 위한 개선된 집중 샘플링)

  • Kim, Man-Sun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Cheah, Wooi Ping
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.287-294
    • /
    • 2007
  • Many classification algorithms for real world data suffer from a data class imbalance problem. To solve this problem, various methods have been proposed such as altering the training balance and designing better sampling strategies. The previous methods are not satisfy in the distribution of the input data and the constraint. In this paper, we propose a focused sampling method which is more superior than previous methods. To solve the problem, we must select some useful data set from all training sets. To get useful data set, the proposed method devide the region according to scores which are computed based on the distribution of SOM over the input data. The scores are sorted in ascending order. They represent the distribution or the input data, which may in turn represent the characteristics or the whole data. A new training dataset is obtained by eliminating unuseful data which are located in the region between an upper bound and a lower bound. The proposed method gives a better or at least similar performance compare to classification accuracy of previous approaches. Besides, it also gives several benefits : ratio reduction of class imbalance; size reduction of training sets; prevention of over-fitting. The proposed method has been tested with kNN classifier. An experimental result in ecoli data set shows that this method achieves the precision up to 2.27 times than the other methods.

Arrhythmia classification based on meta-transfer learning using 2D-CNN model (2D-CNN 모델을 이용한 메타-전이학습 기반 부정맥 분류)

  • Kim, Ahyun;Yeom, Sunhwoong;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.550-552
    • /
    • 2022
  • 최근 사물인터넷(IoT) 기기가 활성화됨에 따라 웨어러블 장치 환경에서 장기간 모니터링 및 수집이 가능해짐에 따라 생체 신호 처리 및 ECG 분석 연구가 활성화되고 있다. 그러나, ECG 데이터는 부정맥 비트의 불규칙적인 발생으로 인한 클래스 불균형 문제와 근육의 떨림 및 신호의 미약등과 같은 잡음으로 인해 낮은 신호 품질이 발생할 수 있으며 훈련용 공개데이터 세트가 작다는 특징을 갖는다. 이 논문에서는 ECG 1D 신호를 2D 스펙트로그램 이미지로 변환하여 잡음의 영향을 최소화하고 전이학습과 메타학습의 장점을 결합하여 클래스 불균형 문제와 소수의 데이터에서도 빠른 학습이 가능하다는 특징을 갖는다. 따라서, 이 논문에서는 ECG 스펙트럼 이미지를 사용하여 2D-CNN 메타-전이 학습 기반 부정맥 분류 기법을 제안한다.

A Transfer Learning Method for Solving Imbalance Data of Abusive Sentence Classification (욕설문장 분류의 불균형 데이터 해결을 위한 전이학습 방법)

  • Seo, Suin;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1275-1281
    • /
    • 2017
  • The supervised learning approach is suitable for classification of insulting sentences, but pre-decided training sentences are necessary. Since a Character-level Convolution Neural Network is robust for each character, so is appropriate for classifying abusive sentences, however, has a drawback that demanding a lot of training sentences. In this paper, we propose transfer learning method that reusing the trained filters in the real classification process after the filters get the characteristics of offensive words by generated abusive/normal pair of sentences. We got higher performances of the classifier by decreasing the effects of data shortage and class imbalance. We executed experiments and evaluations for three datasets and got higher F1-score of character-level CNN classifier when applying transfer learning in all datasets.

Naive Bayes Classifier based Anomalous Propagation Echo Identification using Class Imbalanced Data (클래스 불균형 데이터를 이용한 나이브 베이즈 분류기 기반의 이상전파에코 식별방법)

  • Lee, Hansoo;Kim, Sungshin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1063-1068
    • /
    • 2016
  • Anomalous propagation echo is a kind of abnormal radar signal occurred by irregularly refracted radar beam caused by temperature or humidity. The echo frequently appears in ground-based weather radar due to its observation principle and disturb weather forecasting process. In order to improve accuracy of weather forecasting, it is important to analyze radar data precisely. Therefore, there are several ongoing researches about identifying the anomalous propagation echo with data mining techniques. This paper conducts researches about implementation of classification method which can separate the anomalous propagation echo in the raw radar data using naive Bayes classifier with various kinds of observation results. Considering that collected data has a class imbalanced problem, this paper includes SMOTE method. It is confirmed that the fine classification results are derived by the suggested classifier with balanced dataset using actual appearance cases of the echo.

Improving BMI Classification Accuracy with Oversampling and 3-D Gait Analysis on Imbalanced Class Data

  • Beom Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.9-23
    • /
    • 2024
  • In this study, we propose a method to improve the classification accuracy of body mass index (BMI) estimation techniques based on three-dimensional gait data. In previous studies on BMI estimation techniques, the classification accuracy was only about 60%. In this study, we identify the reasons for the low BMI classification accuracy. According to our analysis, the reason is the use of the undersampling technique to address the class imbalance problem in the gait dataset. We propose applying oversampling instead of undersampling to solve the class imbalance issue. We also demonstrate the usefulness of anthropometric and spatiotemporal features in gait data-based BMI estimation techniques. Previous studies evaluated the usefulness of anthropometric and spatiotemporal features in the presence of undersampling techniques and reported that their combined use leads to lower BMI estimation performance than when using either feature alone. However, our results show that using both features together and applying an oversampling technique achieves state-of-the-art performance with 92.92% accuracy in the BMI estimation problem.

Processing Method of Unbalanced Data for a Fault Detection System Based Motor Gear Sound (모터 동작음 기반 불량 검출 시스템을 위한 불균형 데이터 처리 방안 연구)

  • Lee, Younghwa;Choi, Geonyoung;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1305-1307
    • /
    • 2022
  • 자동차 부품의 결함은 시스템 전체의 성능 저하 및 인적 물적 손실이 발생할 수 있으므로 생산라인에서의 불량 검출은 매우 중요하다. 따라서 정확하고 균일한 결과의 불량 검출을 위해 딥러닝 기반의 고장 진단 시스템이 다양하게 연구되고 있다. 하지만 제조현장에서는 정상 샘플보다 비정상 샘플의 발생 빈도가 현저히 낮다. 이는 학습 데이터의 클래스 불균형 문제로 이어지게 되고, 이러한 불균형 문제는 고장을 판별하는 분류 모델의 성능에 영향을 끼치게 된다. 이에 본 연구에서는 모터의 동작음으로부터 불량 모터를 판별하는 불량 검출 시스템 설계를 위한 데이터 불균형 해결 방법을 제안한다. 자동차 사이드 미러 모터의 동작음을 학습 및 테스트를 위한 데이터 셋으로 사용하였으며 손실함수 계산 시 학습 데이터 셋의 클래스별 샘플 수 가 반영되는 label-distribution-aware margin(LDAM) loss 와 Inception, ResNet, DenseNet 신경망 모델의 비교 분석을 통해 불균형 데이터를 처리할 수 있는 가능성을 보여주었다.

  • PDF

Diabetic Retinopathy Classification with ResNet50 Model Based Multi-Preprocessing (당뇨병성 망막증 분류를 위한 ResNet50 모델 기반 다중 전처리 기법)

  • Da HyunMok;Gyurin Byun;Juchan Kim;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.621-623
    • /
    • 2023
  • 본 연구는 당뇨병성 망막증의 자동 분류를 위해 딥러닝 모델을 활용한다. CLAHE 를 사용한 전처리로 이미지의 대비를 향상시켰으며, ResNet50 모델을 기반으로 한 전이학습을 통해 모델의 성능을 향상했다. 또한, 데이터의 불균형을 고려하여 정확도 뿐만 아니라 민감도와 특이도를 평가함으로써 모델의 분류 성능을 종합적으로 평가하였다. 실험 결과, 제안한 방법은 당뇨병성 망막증 분류 작업에서 높은 정확도를 달성하였으나, 양성 클래스의 식별에서 일부 한계가 있었다. 이에 데이터의 품질 개선과 불균형 데이터 처리에 초점을 맞춘 향후 연구 방향을 제시하였다.

Comparison of Loss Function for Multi-Class Classification of Collision Events in Imbalanced Black-Box Video Data (불균형 블랙박스 동영상 데이터에서 충돌 상황의 다중 분류를 위한 손실 함수 비교)

  • Euisang Lee;Seokmin Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2024
  • Data imbalance is a common issue encountered in classification problems, stemming from a significant disparity in the number of samples between classes within the dataset. Such data imbalance typically leads to problems in classification models, including overfitting, underfitting, and misinterpretation of performance metrics. Methods to address this issue include resampling, augmentation, regularization techniques, and adjustment of loss functions. In this paper, we focus on loss function adjustment, particularly comparing the performance of various configurations of loss functions (Cross Entropy, Balanced Cross Entropy, two settings of Focal Loss: 𝛼 = 1 and 𝛼 = Balanced, Asymmetric Loss) on Multi-Class black-box video data with imbalance issues. The comparison is conducted using the I3D, and R3D_18 models.