• Title/Summary/Keyword: 큰에디모사법

Search Result 7, Processing Time 0.02 seconds

Numerical Simulation of Turbulent Heat Transfer in a Channel with One Wavy Wall (파형벽면이 있는 채널내의 난류열전달에 대한 수치해석)

  • Park Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.49-59
    • /
    • 2005
  • Turbulent heat transfer over a fully-developed wavy channel is investigated by a turbulence model. The nonlinear k- f - f$_{ model of Park et at.[1] is slightly modified and their explicit algebraic heat flux model is employed. The Reynolds number is fixed at Re$_{b}$=6760 and the wave configuration is varied in the range of 0 $\leq$ $\alpha$/$\lambda$$\leq$0.15 and 0.25 $\leq$A/H$\leq$4.0. In order to verify model performances, a large eddy simulation is performed for the selected cases. The model performance is shown to be generally satisfactory. By using k- $\varepsilon$ - f$_{ model, the enhancement of heat transfer and the characteristics of turbulent flow in wavy wall are investigated. Finally, the influence of wavy configuration on heat transfer is scrutinized.

NUMERICAL ANALYSIS ON THE MIXING OF A PASSIVE SCALAR IN THE TURBULENT FLOW OF A SMALL COMBUSTOR BY USING LARGE EDDY SIMULATION (큰에디모사법을 이용한 소형 연소기의 난류 유동장 내 스칼라 혼합에 대한 수치해석)

  • Choi, H.S.;Park, T.S.;Suzuki, K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.67-74
    • /
    • 2006
  • The characteristics of turbulent flow and mixing in a small can type combustor are investigated by means of Large Eddy Simulation (LES). Attention is paid for a combustor having a baffle plate with oxidant injection and fuel injection holes and study is made for three cases of different baffle plate configurations. From the result, it is confirmed that mixing is promoted by interaction between the jets during their developing process and large vortical flows generated in the vicinity of the combustor wall or fuel jet front. This particular flow feature is effective to accelerate the slow mixing between fuel and oxidant suffering from low Reynolds number condition in such a small combustor. In particular, the vortical flow region ahead of fuel jet plays an important role for rapid mixing. Discussion is made for the time and space averaged turbulent flow and scalar quantities which show peculiar characteristics corresponding to different vortical flow structures for each baffle plate shapes.

Large Eddy Simulation of Turbulent Flow in an Optimal Diffuser (큰에디모사법을 이용한 최적 디퓨져내의 난류유동 해석)

  • Lim Seokhyun;Caoi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.811-814
    • /
    • 2002
  • Using a mathematical theory, we show that the optimality condition of a turbulent diffuser with maximum pressure recovery at the exit is zero shear stress along the wall. The optimal diffuser shape is designed through iterative procedures by using the $k-{\varepsilon}-{\nu}^{2}-f$ turbulence model for flow simulation. The Reynolds number based on the bulk mean velocity and the channel height at the diffuser entrance is 18,000. We also perform large eddy simulation to validate the shape design results and investigate the flow characteristics near the zero-skin friction wall. Results from large eddy simulation show that the skin friction is slightly higher than zero but is still very small as compared to that of the flat plate boundary layer flow Although the time-averaged wall shear stress is slightly above zero along the diffuser wall, instantaneous flow reversals occur intermittently. The streamwise mein velocity shows an asymptotic behavior of the half-power-law near the wall where the skin friction is close to zero.

  • PDF

RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors (RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • The turbulent flow characteristics in a coaxial injector were investigated by the nonlinear $k-{\varepsilon}-f_{\mu}$ model of Park et al.[1] and large eddy simulation (LES). In order to analyze the geometric effects on the scalar mixing for nonreacting variable-density flows, several recessed lengths and momentum flux ratios are selected at a constant Reynolds number. The nonlinear $k-{\varepsilon}-f_{\mu}$�� model proposed the meaningful characteristics for various momentum flux ratios and recess lengths. The LES results showed the changes of small-scale structures by the recess. When the inner jet was recessed, the development of turbulent kinetic energy became faster than that of non-recessed case. Also, the mixing characteristics were mainly influenced by the variation of shear rates, but the local mixing was changed by the adoption of recess.

Large Eddy Simulation of Turbulent Heat Transfer in a Straight Cooling Passage with Various Aspect Ratios (형상비변화에 따른 직선냉각유로에 대한 난류열전달 LES해석)

  • Park, Tae-Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.274-277
    • /
    • 2012
  • Large eddy simulation is applied to the turbulent flow and heat transfer in straight cooling passages with varying aspect ratio. The turbulent statistics of the flow and thermal quantities are calculated and the characteristics of Nusselt number are investigated. To scrutinize near-wall streamwise vortices, a conditional sampling technique is adopted. Clockwise and counter-clockwise rotating streamwise vortices are sampled and the probability density function of the vortex circulation Reynolds number and wall Nusselt number are calculated.

  • PDF

열량계 채널에 대한 3차원 열전달 해석

  • Park, Tae-Seon;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.142-150
    • /
    • 2003
  • Turbulent flows and related heat transfer in a square heated duct is investigated by a turbulence model and a large eddy simulation. The cooling channel of calorimeter is modeled to the square duct. The nonlinear k-ε-fμ model of Park et al. [3] is slightly modified and their explicit heat flux model is employed. The Reynolds number is varied in the range 4000≤Reb≤20000. The heat transfer is closely linked to the secondary flows which driven by the turbulent motion. Its magnitude is 1~3% of the mean streamwise velocity. The relation of Nu~Re0.8Pr0.34 is validated by comparing with the predicted Nu of k-ε-fμ model. Finally, the coherent structures and thermal fluctuations are scrutinized.

  • PDF

Numerical Simulation of Turbulent Flow in n Wavy-Walled Channel (파형벽면이 있는 채널 내의 난류유동에 대한 수치해석)

  • Park, Tae-Seon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.655-667
    • /
    • 2003
  • Turbulent flow over a fully-developed wavy channel is investigated by the nonlinear $k-\varepsilon-f_\mu$ model of Park et al.(1) The Reynolds number is fixed at $Re_{b}$ = 6760 through all wave amplitudes and the wave configuration is varied in the range of $0\leq\alpha/\lambda\leq0.15$ and $0.25\leq{\lambda}/H\leq4.0$. The predicted results for wavy channel are validated by comparing with the DNS data of Maa$\beta$ and Schumann(2) The model performance Is shown to be generally satisfactory. As the wave amplitude increases, it is found that the form drag grows linearly and the friction drag is overwhelmed by the form drag. In order to verify these characteristics, a large eddy simulation is performed for four cases. The dynamic model of Germane et al.(3) is adopted. Finally, the effects of wavy amplitude on separated shear layer are scrutinized.