• Title/Summary/Keyword: 크리프 계수

Search Result 111, Processing Time 0.025 seconds

Experimental Study on Mechanical Properties and Deformation Behavior of Concrete with Recycled Aggregates and Steel Fiber (순환골재 및 강섬유를 혼입한 콘크리트의 역학적 특성 및 변형 거동에 관한 실험적 연구)

  • Lee, Hyun-Ho;Lee, Tae-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.357-363
    • /
    • 2016
  • To solve the exhaustion problem of natural aggregate which were create the high value in construction and environmental industry, recycled aggregates have considerable benefits than other materials. However, even though many researches have been conducted with recycled aggregates, building structures with recycled aggregated are rarely constructed because it has lower quality than natural aggregates have. In this study, mechanical and strain properties of recycled aggregates concrete containing steel fibers have been reviewed in order to complement performance of recycled aggregates concrete. As results, recycled aggregates concrete showed lower compressive strength and elastic modulus than plain concrete. But, recycled aggregates concrete containing steel fibers showed equivalent performance with plain concrete. In review of drying shrinkage and creep coefficient, recycled aggregates concrete containing steel fibers showed similar behavior with plain concrete in the range of 0.5 Vol.% fiber content rate by internal restraint effect, moisture transport restraint effect and strength enhancement effect of steel fiber. Therefore, it is considered that mixing steel fibers with concrete is the effective method as a active application plan for recycled aggregates.

Rheological Properties of Bitumen for Reducing Negative Skin Friction (말뚝 부마찰력 저감용 역청재료의 유변학적 특성)

  • 박태순;윤수진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.191-200
    • /
    • 2003
  • This paper presents the rheological properties of bitumen for reducing negative skin friction. The bitumen has been widely used due to both the cost and construction effectiveness. Also, it is well known that the use of bitumen for reducing negative skin friction renders the best results among other available methods. Three different modified bitumens were used for the testing programs. The physical tests include the penetration, the softening point and penetration index. The rheological tests include phase angle, complex modulus, creep tests and flow tests. The tests were conducted at four different temperatures(15, 30, 45 and 6$0^{\circ}C$) in order to simulate the field condition. The test results were analyzed using the phase angle, G$^*$/sin $\delta$, creep compliance and shear viscosity. The result of tests showed that the phase angle increased and G$^*$/sin $\delta$ decreased with the increase of temperature. The creep compliance increased as the loading time increased. The difference of the creep compliance is detected as the time and temperature are varied, however, the difference of the shear viscosity is not significant among the samples tested in this study. The rheological properties of the bitumen also showed that the physical testing method and the temperature dependant testing method are somewhat limited to showing and expressing the full rheological properties of the modified bitumen. The introduction of the time and the temperature dependent testing method is necessary to find out the full rheological properties of the modified bitumen.

Evaluation of Long-Term Deformation Prediction Model on Frozen Sand Considering Fine Contents (세립분 함량을 고려한 동결 사질토의 장기변형 예측 모델 평가)

  • Hwang, Bumsik;Chae, Deokho;Cho, Wanjei
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.93-103
    • /
    • 2017
  • Many countries are interested in the development of the Antarctic area because of the abundant resources and living things of high research value. Korea completed the second Antarctic research station in 2014 and spurring the development of the Antarctic area by constructing runway for the airplanes and a third Antarctic research station. However, frozen soils, unlike typical soils, are sensitive to creep behavior due to the influence of ice and unfrozen water. The creep tests for evaluating creep behaviors on the frozen soils require expensive laboratory equipments and large amount of time. Thus, various empirical models had been developed to describe the unconfined compressive creep behavior of frozen soils. In this study, new analytical creep model on frozen sands was proposed by modifying Ting's Tertiary creep model with a new parameter considering fine contents. Thus, the unconfined compressive creep tests were conducted with the frozen specimens of dense Jumoonjin sand with fine contents of 0, 5, 10 and 15% under various loads at -$5^{\circ}C$, -$10^{\circ}C$ and -$15^{\circ}C$. Consequently, the modified Tertiary creep model with a new parameter for fine contents are not enough for the description of the acutal creep behavior of the frozen sand and new framework should be developed.

Analysis of Long-Term Performance of Geogrids by Considering Interaction among Reduction Factors (감소계수 상호영향을 고려한 지오그리드의 장기성능 해석)

  • Jeon, Han-Yong;Kim, Yuan-Chun;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.55-65
    • /
    • 2012
  • Total reduction factor that is used when calculating allowable tensile strength of geogrids is made by multiplying the installation damage reduction factor ($RF_{ID}$), chemical degradation reduction factor ($RF_D$), and creep reduction factor ($RF_{CR}$) etc. In case of a model estimating allowable tensile strength considering reduction factor over the short-term tensile strength of geogrids, it has a limit of not considering interaction force between reduction factors. Junction strength comes to be reduced by installation damages or chemical degradation in the same way as tensile strength. Single junction test method cannot properly test damaged samples and shows large deviations as it does not consider scale effect. Besides, regarding calculating shear strength, no reasonable study on reduction factors was conducted yet. Therefore, in this study, reduction factors that may affect the long-term performance of geogrids were revaluated considering various conditions and accurate long-term allowable tensile strength was calculated considering interrelation between reduction factors. Creep results after installation damage and chemical resistance test showed lower value than calculated value according to GRI GG-4. After the installation damage test and the chemical resistance test, the reduction factor of junction strength was less than that of tensile strength. Shear strength before and after installation damage showed no change or increase.

Characteristics of Creep Crack Growth in Pure Copper at Elevated Temperature (순동의 고온에서의 크리프 균열성장 특성)

  • Nahm, Seung-Hoon;Kim, Am-Kee;Jung, Min-Woo;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.495-500
    • /
    • 2001
  • The significant creep in copper takes place at relatively low temperature and applied stress. Thus the study on modeling of creep behavior using the copper should provide researchers with benefits such as time for the test. In this study, a test of creep crack growth regarding copper was performed at 400 and $500^{\circ}C$, and analyzed. As result, the crack growth rate at $500^{\circ}C$ turned out to be 10 times higher than that at $400^{\circ}C$ in terms of $C^*$, while the crack growth rate at $500^{\circ}C$ was several hundreds times higher than that at $400^{\circ}C$ in terms of K. Moreover, a linear relationship between the crack growth rate and $C^*$ at the same temperature was established.

  • PDF

Evaluation of Drying Shrinkage and Creep Characteristics by Strength Differences of Concrete Mixed with Admixture (혼화재료 혼입 콘크리트 강도 차에 따른 건조수축 및 크리프 특성 평가)

  • Park, Dong-Cheon;Song, Hwa-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.199-200
    • /
    • 2021
  • In the study, creep and dry shrinkage characteristics were evaluated to determine the material properties necessary for structural analysis such as column shortening and differential drying shrinkage. All the experiments were conducted in an constant temperature and humidity room. The mechanical properties as well as the specific creep and ultimate dry shrinkage values were derived. In addition the characteristics of the physical value of the high-strength fiber reinforced concrete were considered.

  • PDF

Creep Evaluation and Model Review of High-Strength Concrete According to Dry Curing (기건양생에 따른 고강도 콘크리트의 크리프 평가 및 모델 검토)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Son, Min-Jae;Suh, Dong-Kyun;Lee, Yae-Chan;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.146-147
    • /
    • 2020
  • In this study, creep deformation characteristics of high strength concrete under dry curing conditions were investigated. It was confirmed that the creep coefficient decreases as the compressive strength of concrete increases. In addition, a modified proposal for calculating the ultimate creep factor of the ACI 209 model can be derived using the measured values.

  • PDF

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures (고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동)

  • Kim, Young-Sun;Lee, Tae-Gyu;Kim, Woo-Jae;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.627-636
    • /
    • 2011
  • Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.

Assessments of Creep Properties of Strip Type fiber Reinforcement (띠형 섬유보강재의 크리프 특성 평가)

  • 전한용;유중조;김홍택;김경모;김영윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.279-289
    • /
    • 2003
  • Geosynthetic reinforced earth wall was introduced about 20 years ago and many structures have been constructed. Especially, segmental concrete panel facing and friction tie system are the most popular system in Korea, and this friction tie was composed of high tenacity PET filament and LDPE(Low Density Polyethylene) sheath. Due to the lack of direct-test results, design coefficients of friction tie (creep reduction factor) had been determined by quoting the previous and the foreign reference data. This is an unreasonable fact for the use of friction ties. In this study, the creep tests were performed to evaluate the creep behavior of friction tie, and the reduction factor of creep was calculated for the correct design of geosynthetic reinforced earth retaining walls. From the test results, finally it was found that the allowable creep strength of friction tie is 60% of Tult during service life, and creep reduction factor is 1.67 for each grade of friction ties.

An Experimental Study on the Mechanical Properties and Long-Term Deformations of High-Strength Steel Fiber Reinforced Concrete (고강도 강섬유보강 콘크리트의 역학적 특성 및 장기변형 특성에 관한 실험적 연구)

  • Yoon, Eui-Sik;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.401-409
    • /
    • 2006
  • This study presents basic information on the mechanical properties and long-term deformations of high-strength steel fiber reinforced concrete(HSFRC). The Influence of steel fiber on modulus of elasticity, compressive, splitting tensile and flexural strength, and drying shrinkage and creep of HSFRC are investigated, and flexural fracture toughness is evaluated. Test results show that Test results show that the effect of steel fibers on the compressive strength is negligible, and the modulus of elasticity of HSFRC increased with the increase of fiber volume fraction. And the effect of fiber volume fraction($V_f$) and aspect ratio($l_f/d_f$) on tensile strength, flexural strength and toughness is extremely prominent. It is observed that the flexural deflection corresponded to ultimate load increased with the increase of $V_f$ and $l_f/d_f$, and due to fiber arresting cracking, the shape of the descending branch of load-deflection tends towards gently. Also, the effect of addition of various amounts of fiber on the creep and shrinkage is obvious. Especially, the effect of adding fibers to high-strength concrete is more pronounced in reducing the drying shrinkage than the creep.