본 논문에서 제안하는 가상 영상 삽입 시스템은 카메라의 조작이나 시스템 운영자의 개입 없이 모든 처리 과정이 자동으로 진행된다. 이를 위해 시스템은 경기장 좌표계를 정의하고 삽입할 영상의 크기와 위치를 정하는 과정, 경기장의 특징점들을 추출하는 과정, 경기장 좌표계와 참조 영상의 특징점들로부터 투영 변환 파라미터를 추출하는 과정, 실제 동영상에서 삽입 위치를 찾고 추적하여 가상 영상을 삽입하는 과정을 거치게 된다. 본 논문에서 제안한 시스템의 성능을 검증하기 위해 방송용 NTSC 비디오 데이터를 대상으로 실험을 하였으며 그 결과 각 모듈들과 시스템이 효율적임을 입증하였다.
비디오는 인접한 프레임들간에 유사성이 있는 연속된 프레임들로 구성된다. 만약 인접한 프레임들간에 유사성이 존재하는 영역, 즉 움직임이 없는 영역에 워터마크를 삽입한다면 워터마크는 인지되기 쉽다. 본 논문에서는 워터마크의 투영성과 강인성을 위하여 이와 같은 비디오의 특성을 고려한 3D-DCT 계수를 이용한다. 즉, 3D-DCT 압축을 위한 양자화 상수에서 민감도를 유도하고 전역적인 움직임에 비해 지역적인 움직임이 큰 영역의 민감도를 조절한 후 움직임의 크기에 비례해서 시각적으로 중요한 계수를 워터마크를 삽입한다. 실험을 통하여 비디오의 특성을 고려하지 않고 3D-DCT 계수를 이용하는 기존의 방법과 비교해서 PSNR은 유사하지만 JND를 기반으로 하였기 때문에 워터마크의 투명성을 보장하였고 MPEG 압축 및 시간적 공격에 대한 강인성은 약 5% 정도의 성능향상이 있음을 확인하였다.
시술 중 제공되는 2D영상은 실시간으로 환자와 시술도구의 상태정보를 제공해주지만 환부의 입체적ㆍ해부학적 파악이 어렵다. 따라서 긴 촬영시간으로 시술 전 획득되는 3D영상과 시술 중 얻어지는 2D영상간 정합영상은 영상 유도술에 있어서 유용한 정보를 제공한다. 이를 위해 본 논문에서는 볼륨영상으로부터 혈관모델을 추출하고 이를 평면으로 투영하였다. 두 2D영상에서 정차대상이 되는 혈관골격을 추출한 후 혈관의 분기특성을 고려 한 초기정합을 수행하였다. 크기와 초기 위치를 맞춘 혈관골격을 골격간 거리가 최소가 되도록 반복적으로 혈관을 기하변환시키고 최종 변환된 혈관골격을 시술 중 제공되는 2D영상에 겹쳐 가시화 하였다. 이로써 시술시간 경감과 시술성공률 향상을 유도할 수 있는 시술경로맵을 제시하고자 하였다.
본 연구에서는 자기조직화 교사학습 신경망인 SOSL(Self-Organized Superised Learning)과 이 신경망의 구조를 제안한다. SOSL신경망은 하이브리드 형태의 신경망으로써 다수 개의 컴포넌트 에러 역전파 신경망들과 수정된 PCA신경망으로 구성된다. CBP신경망은 군집화되고 복잡한 입력패턴에 대하여 교사학습을 병렬적으로 수행한다. 수정된 PCA신경망은 군집화 및 지역투영에 의하여 원 입력패턴을 보다 작은 차원으로 변환시키기 위하여 사용된다. 제안된 SOSL은 많은 입력패턴을 가짐으로써 큰 네트워크 크기를 가지게 되는 신경망에 효과적으로 적용이 가능하다.
동영상 내에서 이동하는 객체를 추적하기 위해서는 우수한 객체 검출 방법이 필요하다. 이를 위하여, 본 논문에서는 연속된 영상에서의 인접한 프레임들을 이용하여 객체의 형태를 검출하고자 한다. 인접한 프레임들의 합성과 차를 이용하여 움직이는 객체의 대략적인 형태를 알아내고, 대략적인 형태를 이진화시킨 영상과 현재 프레임의 에지 영상과의 AND 연산을 통하여 객체의 형태를 알아 낼 수 있다. 그리고, 이 과정에서 생성되는 노이즈를 채움 연산과 영역화 연산을 통하여 제거할 수 있으며, 얻어진 객체의 크기 비율을 고려한 수직 투영을 통하여 다중 객체를 잘 분리해 낼 수 있었다.
본 논문은 Haar 웨이블릿 특징과 피부색 정보를 이용한 실시간 얼굴 검출 및 추적 방법을 제안한다. 검출과 추적이 각기 다른 특징들을 이용해 이루어졌던 기존 방법과는 달리 본 논문에서는 피부색 정보와 Haar 웨이블릿 특징을 검출과 추적에 동시에 이용하고 두 특징들을 효과적으로 융합함으로써 빠르고 강인한 추적을 가능하게 한다. 제안된 방법은 검출과 추적에 동일한 특징을 이용함에도 불구하고 표본화에 기반을 둔 Condensation 알고리즘의 특징으로 인해 검출 방법만을 적용했을 때 검출하지 못하는 얼굴의 회전이나 가려짐 등의 문제를 효과적으로 해결한다. 특히, 얼굴의 위치와 함께 크기 변화를 효과적으로 추적하기 때문에 얼굴의 위치 및 크기를 정확하게 알아야 하는 얼굴 인식이나 표정인식 등의 다양한 어플리케이션에 이용되기에 용이하다. 제안된 방법은 복잡한 배경 및 다양한 얼굴 자세 등의 변화에 대한 테스트를 통해 효율성을 검증한다.
본 논문에서는 단일 글꼴에 의존하는 원형 패턴 벡터(circular pattern vectors)를 이용하여 위치 이동, 크기 변화 그리고 회전에 무관한 새로운 인쇄체 한글 인식 알고리즘을 제안한다. 제안한 알고리즘은 2진 형태론(binary morphology)을 이용하여 입력 문자에 존재하는 잡음(noise)을 제거한 후, 원형 패턴벡터를 추출한다. 추출된 원형 패턴 벡터는 주어진 문자의 무게 중심을 원의 중심으로 하여 그린 여러 원주 상에 위치한 공간적인 분포 값을 나타내는 것이다. 마지막으로, 실험 문자는 기준 원형 패턴 벡터와 실험 원형 패턴 벡터간의 거리가 최소가 되는 기준 문자로 인식하게 된다. 제안한 알고리즘의 성능을 평가하기 위해, 크기 변화와 회전 변형이 있는 완성형 바탕체 한글 2,350자를 대상으로 모의 실험을 수행하였다. 제안한 알고리즘은 기존의 고리 투영 알고리즘보다 크기 변화와 회전 변형이 있는 한글 인식에 있어서 우수함을 보였다.
직경이 0.102 m이고 높이가 2.5 m인 삼상 swirling(나선) 흐름 유동층에서 열전달 특성을 고찰하였다. 기체유속($U_G$), 액체유속($U_L$), 유동 입자의 크기($d_p$), 그리고 연속상인 액체의 나선 유도 흐름 액체량의 비($R_S$)가 유동층 내부 열원과 유동층간의 총괄 열전달 계수에 미치는 영향을 검토하였다. 유동층 내부 열원과 유동층간의 열전달 특성은 열원 표면과 유동층간의 온도차 요동 자료의 위상공간 투영과 Kolmogorov 엔트로피 해석으로 고찰할 수 있었으며, 나선 유도 흐름 액체량의 비($R_S$)가 0.1에서 0.4까지 증가할수록 온도차 요동 자료의 위상 공간 투영은 점점 안정되고 규칙성이 증대되는 상태를 나타내고, Kolmogorov 엔트로피 값은 감소하는 경향을 나타내었다. 열원 표면과 유동층간의 온도차 요동 자료의 Kolmogorov 엔트로피 값은 나선 유도 흐름 액체량이 증가함에 따라 최소값을 나타내었다. 열원과 유동층간의 총괄 열전달 계수는 기체 유속 및 유도입자의 크기가 증가함에 따라서 증가하였으나, 액체유속, 층공극률, 나선 유도 흐름 액체량의 비가 증가함에 따라서 최대값을 나타내었다. 내부 열원과 유동층간의 총괄 열전달 계수가 최대값을 나타낼 때의 액체의 유속 조건에서 온도차 요동자료의 Kolmogorov 엔트로피의 값도 최대값을 나타내었다. 삼상 나선흐름 유동층에서 열전달 계수와 Kolmogorov 엔트로피를 실험 변수 및 무차원군의 상관식으로 나타낼 수 있었다.
본 논문에서는 필기 한글 문자열 영상에 대한 단어 분리 방법을 제안한다. 제안된 방법은 gap 의 크기 정보를 사용하여 단어를 분리하는데, 이때 gap은 문자열 영상을 수직방향으로 투영한 후 흰-런 (white-run)을 찾음으로써 구할 수 있다. 문자열 영상으로부터 얻어지는 gap들의 크기를 측정한 후, 각각의 gap을 단어와 단어사이에 존재하는 gap과 문자와 문자사이에 존재하는 gap 중 하나로 분류한다. 본 논문에서는 필기 영문 문자열의 단어 분리를 위해 제안된 기존의 세 가지 거리 척도를 채택하고 군집화에 기반한 세 가지 분류방법을 적용하여 한글 문자열의 단어 분리를 위한 최적의 조합을 선정하였다. 우편봉투 상에 작성된 주소열로부터 수작업으로 추출한 305 개의 문자열 영상을 사용하여 실험한 결과 BB(bounding box) 거리를 사용하여 순차적 군집 방법을 적용하는 경우 3 순위까지의 누적 단어 분리 성공률이 88.52% 로서 가장 우수한 성능을 보여 주었다. 또한 하나의 문자열 영상에 대한 단어 분리 속도는 약 0.05초이다.
본 논문에서는 F-투영법과 기하학적인 성장기준을 적용하여 모듈화된 웨이블렛 신경망의 최적구조를 설계할 수 있는 성장과 전지 알고리즘을 제안한다. 기하학적인 성장기준은 지역오차를 고려한 예측 오차기준과 기존의 웨이블렛 함수와의 준직교성을 보장하는 웨이블렛 함수를 배치하기 위한 각도기준으로 구성되어 있다. 이러한 성장기준은 모듈화된 웨이블렛 신경망을 설계자 의도에 부합하도록 구성할 수 있는 방법론을 제시한다. 제안한 성장 알고리즘은 모듈화된 웨이블렛 신경망의 모듈과 망의 크기를 증가시킨다. 또한 소거 알고리즘은 모듈화된 웨이블렛 신경망의 모듈로 사용되는 웨이블렛 신경망의 지역화 특성으로 인해 모듈의 크기가 증가하는 문제점을 극복하기 위해 불필요한 모듈의 노드를 제거한다. 제안한 모듈화된 웨이블렛 신경망의 최적구조 설계알고리즘을 1차원과 2차원의 함수 근사화 문제에 적용하여 제안한 알고리즘의 성능을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.