• Title/Summary/Keyword: 퀵리덕트

Search Result 1, Processing Time 0.017 seconds

Rough Entropy-based Knowledge Reduction using Rough Set Theory (러프집합 이론을 이용한 러프 엔트로피 기반 지식감축)

  • Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.223-229
    • /
    • 2014
  • In an attempt to retrieve useful information for an efficient decision in the large knowledge system, it is generally necessary and important for a refined feature selection. Rough set has difficulty in generating optimal reducts and classifying boundary objects. In this paper, we propose quick reduction algorithm generating optimal features by rough entropy analysis for condition and decision attributes to improve these restrictions. We define a new conditional information entropy for efficient feature extraction and describe procedure of feature selection to classify the significance of features. Through the simulation of 5 datasets from UCI storage, we compare our feature selection approach based on rough set theory with the other selection theories. As the result, our modeling method is more efficient than the previous theories in classification accuracy for feature selection.