• Title/Summary/Keyword: 쾌속 조형 및 제작

Search Result 28, Processing Time 0.028 seconds

A Study on the Manufacture and the Performance Evaluation of Stereolithography System (쾌속 조형시스템의 제작 및 성능평가에 관한 연구)

  • Kang, Won-Joo;Kim, Jun-An;Lee, Seok-Hee;Paik, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.19-25
    • /
    • 1999
  • This paper addresses a development work of a SLA apparatus on laboratory basis. The SLA test machine is composed of optical, movement, curing and control subsystems. Optical part is performed by a He-Cd laser with mirror combination and mechanical movement is achieved by X-Y table. The developed system is evaluated by several test runs, and shows a good precision capability in forming a basic part. The technique used in this work can be extended to replace the high technology transfer cost of commercial RP machine.

  • PDF

Development of Rapid Manufacturing Process by Machining with Automatic Filling (자동 충진 공정을 이용한 쾌속 제작 공정 개발)

  • Shin, B. S.;Yang, D. Y.;Choi, D. S.;Lee, E. S.;Hwang, K. H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.174-178
    • /
    • 2001
  • In order to reduce the lead-time and cost, recently the technology of rapid protoyping and manufacturing(RPM)has been widely used. Machining process is still considered as one of the effective RPM methods that have been developed and currently available in the industry. It also offers practical advantages such as precision and versatility. Some considerations are still required during the machining process. One of the most important points is fixturing. There should be an effective method of fixturing since the fixturing time depends on the complexity of geometry of the part to be machined. In this paper, the rapid manufacturing process has been developed combining machining with automatic filling. The proposed fixturing technique using automatic filling can be widely applicable to free surface type of product such as a fan. In the filling stage, remeltable material is chosen for the filling process. An automatic set-up device attachable to the table of the machine has also been developed. The device ensures the quality during a series of machining operations. This proposed process has shown to be a useful method to manufacture the required products with the reduced the response-time and cost.

  • PDF

Design and Development of the Simulated Die casting Process by using Rapid Prototyping (쾌속조형을 이용한 다이 캐스팅 제품의 시작 공정 설계 및 제작)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho;Park, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.167-173
    • /
    • 2001
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce AI, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared with the normal die-castings and the thin walls of the plaster mold cavity may not be completely filled. Because of lower mechanical properties induced by the large grain structure and incomplete filling, the conventional plaster casting process is not suitable for the trial die-casting process to obtain quality prototypes. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have a runner system, are made using these patterns. Pressurized vibration to imparted molten metal has made grain structure of castings much finer and improved fluidity of the molten enough to obtain complete filling at thin walls which may not be filled in the conventional plaster casting process..

  • PDF

A Study on Manufacturing Resin-based Blow Mold using SLS Parts and Forming Prototype-car Parts (SLS 조형품을 이용한 수지형 블로우 몰드 제작 및 시작차 부품성형에 관한 연구)

  • 양화준;황보중;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.124-131
    • /
    • 2000
  • Rapid Prototyping(RP) models are no longer used only for design verification. Currently, parts built utilizing layer manufacturing technology can be employed as functional prototypes and as patterns or tools for different manufacturing processes such as vacuum casting, investment casting, injection molding, precise casting and sand casting. This trend of Rapid Prototyping application meets the requirement of concurrent engineering and its range covers a more spreaded area. The aim of this paper is saving the manufacturing lead time and cost of plastic parts having hollow space shapes used by prototype-car. Using rapid prototype patterns, made by the Selective Laser Sintering(SLS) technique, a new approach of manufacturing resin-based blow mold is discussed. It has a great potential fur making prototype-car parts with the batch size of under 200 parts, in case of rapid modification due to a subsequent design changes in developing stage. So, the process proposed in this research shows reduction of process time and manufacturing cost when compared with the conventional process such as a Zinc Alloy fur Stamping(ZAS) mold.

  • PDF

Quantitative Comparisons of the Characteristics of various Rapid Prototypes and RP machines (여러 가지 방식의 쾌속조형물 특성 및 장비 성능의 정량적 비교)

  • Kim, Gi-Dae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1237-1242
    • /
    • 2007
  • For the various RP processes and machines, quantitative comparisons were carried out, which include the variations of roughness according to inclined angle of surface, tensile strength and heat-resistance, shape accuracy affected by curl distortion, manufacturability of submilli-scale structure, and manufacturing speed. It was observed that steeper surface results in smoother roughness except Eden500V of Objet. Specimen made by LOM process showed the best heat-resistance, but that of SL process had heat-resistance only up to $60^{\circ}C$. Generally, tensile strength in the building direction was shown to be smaller than in the scanning direction, but SL process showed the opposite results. RM6000II of CMET was superior in the manufacturing small-scale structure below 0.2mm, and Z510 of Zcorp. and ViperPRO of 3D systems were great in manufacturing speed.

  • PDF

Prospect for 3D Printing Technology in Medical, Dental, and Pediatric Dental Field (의료 3D 프린팅 기술의 전망 및 소아치과분야에서의 활용)

  • Lee, Sangho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.1
    • /
    • pp.93-108
    • /
    • 2016
  • One of the fields to which the 3D printing technology can be applied is the field of medicine. Recently, the application of 3D printing technology to the bio-medical field has been gradually increasing with the commercializing of the bio-compatible or bio-degradable materials. The technology is currently contributing to the biomedical field by reducing times required for operations or minimizing adverse effects through preoperative identification of post-surgical consequences or model surgery with artificial bones and organs. This technology also enables the production of customized biomedical auxiliary products like hearing aids or artificial legs etc. For the field of dentistry, the 3D printing technology is also expected to elevate the level of dental treatment by making the customized orthodontic models, crown, bridge, inlay, and surgical guides for implant and surgery. However, issues remaining unidentified or incomplete in printing materials, modeling technology, software technology associated with CAD, verification of bio-stability and bio-effectiveness of materials or in compatibility and standardization of the technology are yet to be solved or be clarified for the full-scale application of the 3D printing technology, thus, it seems such issues should be resolved through further studies.

Vacuum Modeling for Development of Product Design (제품디자인개발을 위한 진공주형기의 사용에 관한 연구)

  • Kim, Sung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.119-125
    • /
    • 2012
  • It is not an overstatement to say that the functions of the products change and the results determine the size and weight of the product. It took a long time to develop the small size everyday tools. One of the ways to shorten the development time was the emergence of vacuum moulds that decreased the design process significantly. In other words, the manufacturing of the product may be limited by the size and shape, but the replication of a simple structure is possible within a few hours. This study aims to review and suggest the design development through vacuum moulds as an area to realize the future additional values to the economic growth under the rapidly changing industry structures as well as securing the weaknesses of the industry structures through the productivity and competitiveness of the corporations.

Development of Graphical Solution for Computer-Assisted Fault Diagnosis: Preliminary Study (컴퓨터 원용 결함진단을 위한 그래픽 솔루션 개발에 관한 연구)

  • Yoon, Han-Bean;Yun, Seung-Man;Han, Jong-Chul;Cho, Min-Kook;Lim, Chang-Hwy;Heo, Sung-Kyn;Shon, Cheol-Soon;Kim, Seong-Sik;Lee, Seok-Hee;Lee, Suk;Kim, Ho-Koung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • We have developed software for converting the volumetric voxel data obtained from X-ray computed tomography(CT) into computer-aided design(CAD) data. The developed software can used for non-destructive testing and evaluation, reverse engineering, and rapid prototyping, etc. The main algorithms employed in the software are image reconstruction, volume rendering, segmentation, and mesh data generation. The feasibility of the developed software is demonstrated with the CT data of human maxilla and mandible bones.