• Title/Summary/Keyword: 쾌속조형시스템

Search Result 39, Processing Time 0.029 seconds

A Semi-fragile Watermarking Algorithm of 3D Mesh Model for Rapid Prototyping System Application (쾌속조형 시스템의 무결성 인증을 위한 3차원 메쉬 모델의 Semi-fragile 워터마킹)

  • Chi, Ji-Zhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.6
    • /
    • pp.131-142
    • /
    • 2007
  • In this paper, semi-fragile watermarking algorithm was proposed for the application to RP(Rapid Prototyping) system. In the case of the perceptual change or distortion of the original one, the prototype product will be affected from the process because the RP system requires the high precision measure. Therefore, the geometrical transformations like translation, rotation and scaling, the mesh order change and the file format change are used in the RP system because they do not change the basic shapes of the 3D models, but, the decimation and the smoothing are not used because they change the models. The proposed algorithm which is called semi-fragile watermarking is robust against to these kinds of manipulations which preserve the original shapes because it considers the limitations of the RP system, but fragile against to the other manipulations which change the original shapes. This algorithm does not change the model shapes after embedding the watermark information, that is, there is no shape difference between the original model and the watermarked model. so, it will be useful to authenticate the data integrity and hide the information in the field of mechanical engineering which requires the high precision measure.

A Blind Watermarking Algorithm of 3D Mesh Model for Rapid Prototyping System Application (RP 시스템 적용을 위한 3차원 메쉬 모델의 블라인드 워터마킹)

  • Ji-Zhe, Cui
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12C
    • /
    • pp.1194-1202
    • /
    • 2007
  • In this paper, we proposed a blind watermarking algorithm to apply to the rapid prototyping system. The 3D mesh model is used in the step of the CAD modeling before the making of the prototype system of the rapid prototyping system. STL type mesh modeling which is used in this system reduces the error of the system and improves the accuracy of the system. In the step of the CAD modeling, some transformations which do not change the model accuracy are used, but some transformations which change the model accuracy are not used because the mesh model error is related to the accuracy of the prototype system. Most watermarking algorithms embedded a specific random noise as the watermark information into the model. These kinds of the algorithms are not proper to the 3D model watermarking. The proposed algorithm can be used for the accurate prototyping system because it does not change the model after the watermark embedding This means it can be used for the copyright marking and the data integrity.

A Tangential Cutting Algorithm for Rapid Prototype System using Genetic Algorithm (유전자 알고리즘을 이용한 쾌속조형 경사절단 알고리즘)

  • Lee, Hyo-Jin;Chun, In-Cook;Kong, Yong-Hae;Kim, Seung-Woo;Joo, Young-Cheol;Um, Tai-Joon;Bang, Jae-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.343-346
    • /
    • 2003
  • 기존 쾌속조형시스템의 단점을 보완하기 위해 본 연구팀에서 개발한 쾌속조형시스템을 수직절단에 의해 층별 성형할 경우 가공된 물체의 표면에 계단형 표면과 같은 왜곡현상이 발생한다. 이러한 왜곡 현상을 보완하기 위해 수직절단이 아닌 경사절단하여 계단형 윤곽과 같은 표면 왜곡의 문제점을 보완하고자 한다. 최적의 경사절단선분을 구하기 위해 경사절단선분의 길이와 중간층 점의 거리를 정의하여 이를 최소화하는 에너지 함수를 구현하였다. 에너지를 최소화하기 위한 알고리즘으로 급강하법을 사용하였으나, 이 방법은 에너지가 작아지는 방향으로만 움직이기 때문에 물체의 윤곽이 복잡할 경우 최적이 아닌 다른 위치에 귀착하는 지역적 최적해가 발생한다. 본 논문에서는 이러한 지역적 최적해를 벗어나 최적의 경사절단선분을 찾기 위해 유전자 알고리즘을 사용하였다. 유전자 알고리즘을 사용할 경우, 급강하법에서 발생하였던 지역적 최적해 문제가 해결되어 최적의 위치를 찾을 수 있었다.

  • PDF

Bio-degradable 3D-scaffold fabrication using rapid-prototyping system (쾌속조형시스템을 이용한 생체 조직 재생용 지지체 제작과 특성분석)

  • Kim, Ji-Woong;Park, Ko-Eun;Lee, Jun-Hee;Park, Su-A;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1697-1699
    • /
    • 2008
  • The purpose of tissue engineering is to repair or replace damaged tissues or organs by a combination of cells, scaffold, suitable biochemical and physio-chemical factors. Among the three components, the biodegradable scaffold plays an important role in cell attachment and migration. In this study, we designed 3D porous scaffold by Rapid Prototyping (RP) system and fabricated layer-by-layer 3D structure using Polycarprolactone (PCL) - one of the most flexible biodegradable polymer. Furthermore, the physical and mechanical properties of the scaffolds were evaluated by changing the pore size and the strand diameter of the scaffold. We changed nozzle diameter (strand diameter) and strand to strand distance (pore size) to find the effect on the mechanical property of the scaffold. And the surface morphology, inner structure and storage modulus of PCL scaffold were analyzed with SEM, Micro-CT and DMA.

  • PDF

Development of a Three Dimensional Control System for Implementing Rapid Prototyping Technology (쾌속조형기술의 구현을 위한 3차원 제어시스템 개발)

  • Cho, Sung-Mok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.775-780
    • /
    • 2007
  • Rapid Prototyping (RP) is a technology that produces prototype parts from 3D computer aided design model data without intermediate processing technology rapidly. CAD model data are created from 3D object digitizing systems but presented just as 2D data when they are printed as a hard copy or displayed on a monitor. However, Rapid Prototyping Technology fabricates 3D objects the same that CAD data because it transforms designed 3D CAD data into 2D cross sectional data, and manufactures layer by layer deposition sequentially. But most of all the small and medium scale companies which produce a toothbrush, a toy and such like provisions are in difficult situations to buy RP system because it is very expensive. In this paper, we propose a 3D control system adopting open source programs for implementing Rapid Prototyping Technology in order that RP system can be purchase at a moderate price.

  • PDF

A Description Method of Linear Hotwire Posture in Space for the Cutting System of VLM-S (가변적층 쾌속조형공정용 CAD 시스템 개발을 위한 3차원 공간상에서의 선형열선절단기 자세표현에 관한 연구)

  • 이상호;문영복;안동규;양동열;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.11-14
    • /
    • 2001
  • In all Rapid Prototyping(RP) processes, computer-aided design(CAD) solid model is sliced into thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successively deposited and, at the same time, bonded onto the previous layer, the stacked layers form a physical part of the model. The objective of this study is to develop a method for obtaining necessary coordinates$(x,\;y,\;\theta_x,\;\theta_y)$ to position linear hotwire of the cutting system in three-dimensional space for the Variable Lamination Manufacturing process (VLM-S), which utilizes expandable polystyrene foam sheet as part material. In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes, such as a spanner, a patterned columm, and a pyramid were made using data obtained from the method.

  • PDF

A study on the development of rapid prototyping system using 5 axis machining (5축 가공을 이용한 쾌속조형 시스템의 개발)

  • 정태성;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1011-1014
    • /
    • 2002
  • In order to reduce the lead-time and cost, many useful methods have been applied to Rapid Prototyping (RP) in recent years. But cutting process is still considered as one of the effective RP methods that have been developed and currently available in the industry. It also owen practical advantages such as precision and versatility. However, traditional 3 axis NC machining has some inherent limitations such as the restriction of tool accessibility and the complex setup. In this work, a new rapid prototyping system with high speed 5 axis machining has been developed to overcome those limitations. The architecture of developed system is described in detail and the successful application examples are presented.

  • PDF