• Title/Summary/Keyword: 쾌속열용삭공정

Search Result 4, Processing Time 0.02 seconds

A Study of Design for Hot Tool to Minimize Radius of Heat Affected Zone in Rapid Heat Ablation process (쾌속 열용삭 공정에서 열반경 최소화를 위한 열 공구 설계에 관한 연구)

  • Kim Hyo-Chan;Lee Sang-Ho;Park Seung-Kyo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.177-186
    • /
    • 2006
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience due to cleaning process. Therefore, a new rapid manufacturing process, Rapid Heat Ablation process (RHA) using the hot tool, has been developed. In this paper, the hot tool for RHA process is designed to minimize radius of heat affected zone. TRIZ well-known as creative problem solving method is applied to overcome the contradictive requirements of the hot tool. For the detailed design of the hot tool, numerical model is established with several assumptions. In order to verify the numerical results, surface temperature of the hot tool is measured with K-type thermocouple at the predetermined location. Numerical and experimental results show that the devised hot tool fulfils its requirements. The practicality and effectiveness of the designed hot tool have been verified through experiments.

Development of Rapid Heat Ablation process Using Rotary Hot tool (회전 열공구를 이용한 쾌속 열용삭 공정 개발에 관한 연구)

  • Kim H.C.;Park S.H.;Yang D.Y.;Park S.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.224-230
    • /
    • 2005
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience due to cleaning process. This paper introduces a new rapid manufacturing process called Rapid Heat Ablation process (RHA) using the rotary hot tool to overcome limitations of traditional machining process. The rotary hot tool to satisfy requirements of RHA process is designed and produced. In order to examine relationships between kerfwidth and process parameters such as heat input, speed of tool and speed of revolution, experiments were carried out. In addition, relationship between the kerfwidth and the effective heat input was obtained. Based on the experimental results, double-curved shape was ablated to show the validity of proposed process. In the procedure, the rough cut and fine cut were performed according to the conditions of process parameters without tool change process. The practicality and effectiveness of the proposed process have been verified through ablation of three-dimensional shape.

  • PDF

A Study of Design for Hot Tool to Minimize Radius of Heat Affected Zone in Rapid Heat Ablation process (쾌속 열용삭 공정에서 열반경 최소화를 위한 열 공구 설계에 관한 연구)

  • Kim H.C.;Lee S.H.;Song M.S.;Yang D.Y.;Park S.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.743-748
    • /
    • 2005
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience for clarity. Therefore, a new rapid manufacturing process using the hot tool, Rapid Heat Ablation process (RHA), has been developed. In this paper, the hot tool for RHA process is devised to minimize radius of heat affected zone and also investigated for verification. TRIZ well-known as creative problem solving method is applied to overcome the contradictive requirements of the hot tool. For the detailed design of the hot tool, numerical model is established with several assumptions. Based on the numerical results, surface temperature is measured with K-type thermocouple at the predetermined location. Numerical and experimental results show that the devised hot tool fulfils its requirements. It verifies the practicality of hot tool that the hemisphere shape is ablated using the hot tool with stair structure.

  • PDF

Investigation into Development of Rapid Heat Ablation process Using hot tool (열 공구를 이용한 쾌속 열용삭 공정 개발에 관한 연구)

  • Kim Hyo Chan;Lee Sang Ho;Park Seong Kyo;Yang Dong Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.222-231
    • /
    • 2005
  • Recently, life cycle and lead-time of products have been shortened with the demand of customers. Therefore, it is important to reduce time and cost at the stage of manufacturing trial molds. In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience for clarity. In this work, a new rapid manufacturing process using the hot tool, Rapid Heat Ablation process, has been developed to overcome such limitations. While the hot tool moves the predetermined path, the heat of the tool decomposes the remained material. The radius of heat affect ed zone related to process parameters was investigated through experiments to improve the quality of ablated parts. In order to examine the applicability of the proposed process, three-dimensional shapes such as hemisphere and standard test part, wereablatedutilizingtheapparatus.