• Title/Summary/Keyword: 쾌삭황동

Search Result 4, Processing Time 0.021 seconds

Dynamic Compressive Deformation Characteristics of Free-Cutting Brass And Yellow Brass at High Strain Rates (고변형률 압축 하중에서 쾌삭 황동과 황동의 동적 변형 거동 특성)

  • Lee, Ouk-Sub;Kim, Kyoung-Joon;Lee, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.107-112
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically loaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.

  • PDF

Dynamic deformation behavior of rubber and brass under high strain rate compressive loading (고변형률 속도 압축 하중 하에서의 고무와 황동의 동적 거동 특성)

  • 이억섭;김경준;이종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1491-1494
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s∼104/s. This type of test procedure has been used to examine the dynamic response of materials in various modes of testing. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

Rod Impact Test for the Determination of Dynamic Yield Stress of Metals (금속재료의 동적항복응력 결정을 위한 봉충격시험법)

  • 민옥기;이정민;남창훈;황재준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.78-89
    • /
    • 1993
  • A new theory based on the modified momentum and energy conservation has been proposed in order to overcome the drawbacks included in previous theories which are used for the determination of dynamic yield stresses and the investigation of dynamic behavior of metals. Then the improvements suggested by the new theory have been manifested through the analysis of the error included in the measurement of deformed length and through the comparison between the new theory, existing theories, and experimental results performed by previous workers. Meanwhile rod impact test has been performed which uses a compressed- air system for the acceleration of flat-ended cylindrical free-cutting brass rods. From the geomtrical measurements of deformed length, the dynamic yield stress of free-cutting brass has determined.

Dynamic Compressive Deformation Characteristics of Brass at High Strain Rates (고변형률 압축 하중에서 활동(KS D 5101 C3605BD-F)의 동적 변형 거동 특성)

  • 이억섭;나경찬;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.142-147
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically leaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate ]ending conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.