• Title/Summary/Keyword: 콜리메이터 각도

Search Result 28, Processing Time 0.024 seconds

Development of Ideal Model Based Optimization Procedure with Heuristic Knowledge (정위적 방사선 수술에서의 이상표적모델과 경험적 지식을 활용한 수술계획 최적화 방법 개발)

  • 오승종;송주영;최경식;김문찬;이태규;서태석
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.84-93
    • /
    • 2004
  • Stereotactic radiosurgery (SRS) is a technique that delivers a high dose to a target legion and a low dose to a critical organ through only one or a few irradiations. For this purpose, many mathematical methods for optimization have been proposed. There are some limitations to using these methods: the long calculation time and difficulty in finding a unique solution due to different tumor shapes. In this study, many clinical target shapes were examined to find a typical pattern of tumor shapes from which some possible ideal geometrical shapes, such as spheres, cylinders, cones or a combination, are assumed to approximate real tumor shapes. Using the arrangement of multiple isocenters, optimum variables, such as isocenter positions or collimator size, were determined. A database was formed from these results. The optimization procedure consisted of the following steps: Any shape of tumor was first assumed to an ideal model through a geometry comparison algorithm, then optimum variables for ideal geometry chosen from the predetermined database, followed by a final adjustment of the optimum parameters using the real tumor shape. Although the result of applying the database to other patients was not superior to the result of optimization in each case, it can be acceptable as a plan starling point.

  • PDF

A Study on Dose Distribution Programs in Gamma Knife Stereotactic Radiosurgery (감마나이프 방사선 수술 치료계획에서 선량분포 계산 프로그램에 관한 연구)

  • 고영은;이동준;권수일
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.175-184
    • /
    • 1998
  • The dose distribution evaluation program for the stereotactic radiosurgery treatment planning system using a gamma knife has been built in order to work on PC. And this custom-made dose distribution is compared with that of commercial treatment planning program. 201 source position of a radiation unit were determined manually using a gamma knife collimator draft and geometrical coordinates. Dose evaluation algorithm was modified for our purpose from the original KULA, a commercial treatment planning program. With the composed program, dose distribution at the center of a spherical phantom, 80 mm in diameter, was evaluated into axial, coronal and sagittal image per each collimator. Along with this evaluated data, the dose distribution at a arbitrary point of inside the phantom was compared with those from KULA. Radiochromic film was set up at the center of the phantom and was irradiated by gamma knife, for the verification of dose distribution. In result, the deviation of the dose distribution from that of KULA is less than ${\pm}$3%, which is equivalent to ${\pm}$0.3 mm in 50% isodose distribution for all examined coordinates and film verification. The custom-made program, GPl is proven to be a good tool for the stereotactic radiosurgery treatment planning program.

  • PDF

Dosimetric Characteristics on Penumbra Regions of the Multileaf Collimator as Compared with the Lead Alloy Block (다엽 콜리메이터(Multileaf Collimator)와 합금납 차폐물(Lead Alloy Block)의 반 그림자영역의 선량 분포상의 특성 비교)

  • Lee Sang Wook;Oh Young Tack;Kim Woo Cheol;Keum Ki Chang;Yoon Seong Ick;Kim Hyun Soo;Park Won;Chu Seong Sil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.391-396
    • /
    • 1995
  • Purpose : The Conformal Radiation Therapy has bee widely used under favour of development of computer technologies. The delivery of a large number of static radiation fields are being necessary for the conformal irradiation. In this paper we investigate dosimetric characteristics on penumbra regions of a multileaf collimator(MLC), and compare to those of lead alloy block for the optimal use of the system in 3-D conformal radiotherapy. Materials and Methods : The measurement of penumbra by MLC or lead alloy block was performed with 6 or 10 MV X-rays. The film was positioned at a dmax depth and 10 cm depth, and its optical density was determined using a scanning videodensitometer. The effective penumbra, the distance from $80{\%}$ to $20{\%}$ isodose lines and $90{\%}$ to $10{\%}$ were analyzed as a function of the angle between the direction of leaf motion and the edge defined by leaves. Results : Increasing MLC angle ($0-75^{\circ}$) was observed with increasing the penumbra widths and the scalloping effect. There was no definite differences of penumbra width from $80{\%}$ to $20{\%}$ isodose lines, while being the small increase of penumbra width from $90{\%}$ to $10{\%}$ isodose line varing the depth and energy. The effective penumbra width of lead alloy block are agree resonably with those of MLC within 4.8mm. Conclusion : The comparative qualitative study of the penumbra between MLC and lead alloy block demonstrate the clinical acceptability and suitability of the multileaf collimator for 3-D conformal radiotherapy.

  • PDF

Clinical Application of Wedge Factor (Wedge Factor의 임상적 응용)

  • Choi Dong-Rak;Ahn Yong-Chan;Huh Seung Jae
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.291-296
    • /
    • 1995
  • Purpose : In general, the wedge factors which are used clinical practices are ignored of dependency on field sizes and depths. In this present, we investigated systematically the depth and field size dependency to determine the absorbed dose more accurately. Methods : The wedge factors for each wedge filter were measured at various depths (depth of Dmax, 5cm, 10cm, and 15cm) and field sizes ($5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm, and 20cm{\times}20cm$) by using 4-, 6-, and 10-MVX rays. By convention, wedge factors are determined by taking the ratio of the central axis ionization readings when the wedge filter is in place to those of the open field in same field size and measurement depth. In this present work, we determined the wedge factors for 4-, 6-, and 10-MV X rays from Clinac 600C and 2100C linear accelerators (manufactured by Varian Associates, Inc., Palo Alto, CA). To confirm that the wedge was centered, measurements were done with the two possible wedge position and various collimator orientations. Results : The standard deviations of measured values are within $0.3\;\%$ and the depth dependence of wedge factor is greater for the lower energies. Especially, the variation of wedge factor is no less than $5\%$ for 4- and 6- MV X rays with more than $45^{\circ}$ wedge filters. But there seems to be a small dependence on field size. Conclusion : The results of this study show a dependence on the point of measurement. There also seems to be a small dependence on field size. And so, we should consider the depth and field size dependence in determining the wedge factors. If one wedge factor were to be used for each wedge filter it seems that the measurement for a 10cm x 10cm field size at a depth of loom would be a reasonable choice.

  • PDF

Evaluating efficiency of Split VMAT plan for prostate cancer radiotherapy involving pelvic lymph nodes (골반 림프선을 포함한 전립선암 치료 시 Split VMAT plan의 유용성 평가)

  • Mun, Jun Ki;Son, Sang Jun;Kim, Dae Ho;Seo, Seok Jin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • Purpose : The purpose of this study is to evaluate the efficiency of Split VMAT planning(Contouring rectum divided into an upper and a lower for reduce rectum dose) compare to Conventional VMAT planning(Contouring whole rectum) for prostate cancer radiotherapy involving pelvic lymph nodes. Materials and Methods : A total of 9 cases were enrolled. Each case received radiotherapy with Split VMAT planning to the prostate involving pelvic lymph nodes. Treatment was delivered using TrueBeam STX(Varian Medical Systems, USA) and planned on Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28), AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). Lower rectum contour was defined as starting 1cm superior and ending 1cm inferior to the prostate PTV, upper rectum is a part, except lower rectum from the whole rectum. Split VMAT plan parameters consisted of 10MV coplanar $360^{\circ}$ arcs. Each arc had $30^{\circ}$ and $30^{\circ}$ collimator angle, respectively. An SIB(Simultaneous Integrated Boost) treatment prescription was employed delivering 50.4Gy to pelvic lymph nodes and 63~70Gy to the prostate in 28 fractions. $D_{mean}$ of whole rectum on Split VMAT plan was applied for DVC(Dose Volume Constraint) of the whole rectum for Conventional VMAT plan. In addition, all parameters were set to be the same of existing treatment plans. To minimize the dose difference that shows up randomly on optimizing, all plans were optimized and calculated twice respectively using a 0.2cm grid. All plans were normalized to the prostate $PTV_{100%}$ = 90% or 95%. A comparison of $D_{mean}$ of whole rectum, upperr ectum, lower rectum, and bladder, $V_{50%}$ of upper rectum, total MU and H.I.(Homogeneity Index) and C.I.(Conformity Index) of the PTV was used for technique evaluation. All Split VMAT plans were verified by gamma test with portal dosimetry using EPID. Results : Using DVH analysis, a difference between the Conventional and the Split VMAT plans was demonstrated. The Split VMAT plan demonstrated better in the $D_{mean}$ of whole rectum, Up to 134.4 cGy, at least 43.5 cGy, the average difference was 75.6 cGy and in the $D_{mean}$ of upper rectum, Up to 1113.5 cGy, at least 87.2 cGy, the average difference was 550.5 cGy and in the $D_{mean}$ of lower rectum, Up to 100.5 cGy, at least -34.6 cGy, the average difference was 34.3 cGy and in the $D_{mean}$ of bladder, Up to 271 cGy, at least -55.5 cGy, the average difference was 117.8 cGy and in $V_{50%}$ of upper rectum, Up to 63.4%, at least 3.2%, the average difference was 23.2%. There was no significant difference on H.I., and C.I. of the PTV among two plans. The Split VMAT plan is average 77 MU more than another. All IMRT verification gamma test results for the Split VMAT plan passed over 90.0% at 2 mm / 2%. Conclusion : As a result, the Split VMAT plan appeared to be more favorable in most cases than the Conventional VMAT plan for prostate cancer radiotherapy involving pelvic lymph nodes. By using the split VMAT planning technique it was possible to reduce the upper rectum dose, thus reducing whole rectal dose when compared to conventional VMAT planning. Also using the split VMAT planning technique increase the treatment efficiency.

  • PDF

Evaluation of Scattered Dose to the Contralateral Breast by Separating Effect of Medial Tangential Field and Lateral Tangential Field: A Comparison of Common Primary Breast Irradiation Techniques (유방암 접선조사 치료 방법에 대한 반대쪽 유방에서의 산란선량 평가)

  • Ban, Tae-Joon;Jeon, Soo-Dong;Kwak, Jung-Won;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2012
  • Purpose: The concern of improving the quality of life and reducing side effects related to cancer treatment has been a subject of interest in recent years with advances in cancer treatment techniques and increasing survival time. This study is an analysis of differing scattered dose to the contralateral breast using common different treatment techniques. Materials and Methods: Eclipse 10.0 (Varian, USA) based $30^{\circ}$ EDW (Enhanced dynamic wedge) plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FiF (field in field) plan were established using CT image of breast phantom which in our hospital. Each treatment plan were designed to exposure 400 cGy using CL-6EX (VARIAN, USA) and we measured scattered dose at 1 cm, 3 cm, 5 cm, 9 cm away from medial side of the phantom at 1 cm depth using ionization chamber (FC 65G, IBA). We carried out measurement by separating effect of medial tangential field and lateral tangential field and analyze. Results: The evaluation of scattered dose to contralateral breast, $30^{\circ}$ EDW plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FIF plan showed 6.55%, 4.72%, 2.79%, 2.33%, 1.87% about prescription dose of each treatment plan. The result of scattered dose measurement by separating effect of medial tangential field and lateral tangential field results were 4.94%, 3.33%, 1.55%, 1.17%, 0.77% about prescription dose at medial tangential field and 1.61%, 1.40%, 1.24%, 1.16%, 1.10% at lateral tangential field along with measured distance. Conclusion: In our experiment, FiF treatment technique generates minimum of scattered dose to contralateral breast which come from mainly phantom scatter factor. Whereas $30^{\circ}$ wedge plan generates maximum of scattered doses to contralateral breast and 3.3% of them was scattered from gantry head. The description of treatment planning system showed a loss of precision for a relatively low scatter dose region. Scattered dose out of Treatment radiation field is relatively lower than prescription dose but, in decision of radiation therapy, it cannot be ignored that doses to contralateral breast are related with probability of secondary cancer.

  • PDF

Error Analysis of Delivered Dose Reconstruction Using Cone-beam CT and MLC Log Data (콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석)

  • Cheong, Kwang-Ho;Park, So-Ah;Kang, Sei-Kwon;Hwang, Tae-Jin;Lee, Me-Yeon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.332-339
    • /
    • 2010
  • We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.

Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy (15 MV 의료용 선형가속기에서 발생되는 광중성자의 선량 평가 - 3차원입체조형방사선치료와 세기조절방사선치료의 비교 -)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photonueutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photonbeams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.