• 제목/요약/키워드: 콘텐츠 기반 추천

검색결과 292건 처리시간 0.024초

그래프 기반 음악 추천을 위한 소리 데이터를 통한 태그 자동 분류 (Automatic Tag Classification from Sound Data for Graph-Based Music Recommendation)

  • 김태진;김희찬;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권10호
    • /
    • pp.399-406
    • /
    • 2021
  • 콘텐츠 산업의 꾸준한 성장에 따라 수많은 콘텐츠 중에서 개인의 취향에 적합한 콘텐츠를 자동으로 추천하는 연구의 필요성이 증가하고 있다. 콘텐츠 자동 추천의 정확도를 향상시키기 위해서는 콘텐츠에 대한 사용자의 선호 이력을 바탕으로 하는 기존 추천 기법과 더불어 콘텐츠의 메타데이터 및 콘텐츠 자체에서 추출할 수 있는 특징을 융합한 추천 기법이 필요하다. 본 연구에서는 음악의 소리 데이터로부터 태그 정보를 분류하는 LSTM 기반의 모델을 학습하고 분류된 태그 정보를 음악의 메타 데이터로 추가하여, 그래프 임베딩 시 콘텐츠의 특징까지 고려할 수 있는 KPRN 기반의 새로운 콘텐츠 추천 방법을 제안한다. 카카오 아레나 데이터 기반 실험 결과, 본 연구의 제안 방법은 기존의 임베딩 기반 추천 방법보다 우수한 추천 정확도를 보였다.

온톨로지 기반 웹 콘텐츠 추천 기법 (Web Contents Recommendation based on Ontology)

  • 김제민;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.294-299
    • /
    • 2006
  • 추천 시스템은 사용자 프로파일을 기반으로 개인 취향에 맞는 정보나 제품에 대한 이용성을 향상 시킨다. 본 논문에서는 시멘틱 환경 내에서 사용자 개개인에 맞는 웹 콘텐츠를 제공하기 위한 온톨로지 기반의 웹 콘텐츠 추천 방법론을 제안한다. 이를 위해서 2가지에 초점을 두었다. 첫 번째, 사용자 프로파일의 쓰임새를 향상시키기 위해 온톨로지 모델을 적용한다. 이는 비슷한 서비스를 제공하는 여러 웹 서비스 사이트에서 사용자의 기호 정보를 공유할 수 있다는 이점을 갖는다. 또한 온톨로지를 기반으로 생성된 사용자 프로파일은 콘텐츠 추천 점수 계산을 위한 정확한 입력 데이터를 제공한다. 두 번째로 각각의 웹 콘텐츠들의 추천 점수를 계산하는 함수를 정의한다. 제안하고자 하는 함수는 각 웹 콘텐츠의 계층구조와 웹 콘텐츠를 구성하는 속성들의 관계를 명시한 온톨로지를 기반으로, 사용자 프로파일의 내용과 웹 콘텐츠의 개념 유사도(Concept Similarity)와 관계 유사도(Relation Similarity) 구한다. 따라서 본 논문에서는 전체 유사도(Concept Similarity+Relation Similarity)를 추천 점수로 적용한다.

  • PDF

이용자 이용행위 및 콘텐츠 위치정보에 기반한 개인화 추천방법에 관한 연구 (A Study on Personalized Recommendation Method Based on Contents Using Activity and Location Information)

  • 김용;김문석;김윤범;박재홍
    • 정보관리학회지
    • /
    • 제26권1호
    • /
    • pp.81-105
    • /
    • 2009
  • 본 연구에서는 웹, IPTV 등의 콘텐츠 유통망에서의 개인화 추천서비스를 위하여 이용자의 콘텐츠 이용행위와 콘텐츠의 위치정보를 활용한 추천방법을 제안하고 있다. 추천방법의 성능향상을 위하여 이용자 및 콘텐츠 프로파일 생성방법과 함께, 이용자의 콘텐츠 이용행위를 암묵적 이용자 피드백으로서 학습과정에 적용하여 이용자 선호도를 분석하였다. 학습과정에서의 이용자 선호도 분석을 위하여 협업여과추천방법 및 내용기반추천 방법을 적용하였다. 또한 보다 정확한 추천을 위한 최종 콘텐츠 추천을 위하여 웹사이트 상의 콘텐츠에 대한 위치정보를 활용한 추천방법을 제안하고 있다. 이를 통하여 보다 효율적이고 정확한 추천 서비스의 제공이 가능할 수 있다.

유사도와 난이도를 이용한 학습 콘텐츠 추천 방법 (A Method for Recommending Learning Contents Using Similarity and Difficulty)

  • 박재욱;이용규
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권7호
    • /
    • pp.127-135
    • /
    • 2011
  • 이러닝 시스템에서 학습자에게 적합한 콘텐츠 선택을 돕기 위한 콘텐츠 추천 시스템은 필수적이다. 학습자의 선호도를 통한 콘텐츠 추천은 협업 필터링 추천 방법과 내용 기반 추천 방법이 가장 많이 사용되고 있다. 그러나 기존추천 방법들은 학습자의 학습수준을 고려하지 않고 다른 사용자의 선호도를 기반으로 학습 콘텐츠를 추천한다. 따라서 상대적으로 콘텐츠를 학습한 학습자가 적은 경우 추천의 효율성이 떨어지고, 새로운 아이템이 추가될 경우 추천이 쉽지 않은 단점이 있다. 이 문제를 해결하기 위해 우리는 학습 콘텐츠의 유사도와 난이도에 기반한 콘텐츠 추천 방법을 제안한다. 학습 콘텐츠의 두 특성을 반영한 추천함수에 의해 선행학습 성취도가 낮은 학습자에게는 난이도가 낮고 유사도가 높은 콘텐츠를 추천하고, 성취도가 높은 학습자에게는 난이도가 높고 유사도가 낮은 콘텐츠를 추천한다. 이와 같이 다른 학습자의 선호도와는 무관하게 학습자의 성취도에 따라 가장 적합한 콘텐츠를 추천할 수 있다.

메타데이터 개수 증가를 이용한 콘텐츠 기반 영화 추천 시스템의 정확도 향상 테스트 (Accuracy Improvement Test for Contents-based Movie Recommendation System by Increasing Metadata)

  • 최다정;서진경;백주련
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.35-38
    • /
    • 2022
  • 콘텐츠 기반 추천 시스템은 대표적인 추천 모델 방법 중 하나이다. 하지만 콘텐츠 기반 추천 시스템은 사용자 관련 메타데이터를 고려하기보다 내용 관련 메타데이터에만 의존하는 경향이 있다. 본 논문에서는 영화의 특징을 담고 있는 메타데이터를 이용해 추천 시스템을 간단히 구현하고, 추천한 영화와 사용자의 영화 평점을 이용해 추천 시스템의 정확도를 측정하였다. 영화 메타데이터 keywords, genres, cast의 개수를 늘려가며 정확도가 변화하는지 알아보았다. 메타데이터 각각의 개수가 증가하면 정확도도 향상할 것이라고 기대했으나 큰 차이가 나타나지 않았다. 모델 평가 결과, 미세한 차이지만 영화 메타데이터를 상위 3개씩 추출해 영화를 추천했을 때의 정확도가 1.2100318041248186으로 가장 높았다.

  • PDF

사용자 정보 기반 타겟팅 광고 콘텐츠 추천 엔진의 설계 및 구현 (Design and Implementation of Recommendation Engine for Targeting Advertisement Service based on User Information)

  • 박성주;양창모;송재종
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.74-76
    • /
    • 2014
  • 모바일 단말, 웨어러블 디바이스 등 개인용 단말의 이용이 확대되면서 사용자 및 사용자 그룹의 다양한 미디어 소비정보, 이용 패턴 정보 기반으로 하는 다양한 서비스가 확대되고 있다. 이러한 개인 혹은 사용자 그룹을 대상으로 하는 대표적이면서 가장 서비스 효율을 높일수 있는 서비스 가운데 하나가 타겟팅 광고 서비스이다. 이러한 타겟팅 광고 서비스는 단순한 개인의 선호도 정보만을 반영하는 것에서 개인의 미디어 소비이력, 미디어 이용패턴 정보 등 사용자가 직접적으로 정보를 입력없이 추천이 가능하도록 연구가 계속되고 있다. 본 논문에서는 고정형 및 모바일 단말에서 사용자의 미디어 콘텐츠 선호 정보 및 소비이력 정보를 통합적으로 반영하여 타겟팅 광고 콘텐츠를 자동적으로 선정하고 추천하는 엔진을 설계 구현하였다. 제안한 추천엔진은 콘텐츠 특성에 대한 선호도와 사용자의 콘텐츠 소비 패턴에서 취득된 정보를 기반으로 예측된 선호도를 결합하여 사용자의 최종 선호도를 추정하고, 이를 기반으로 광고 콘텐츠에 대한 추천을 수행한다. 사용자 메타데이터 및 콘텐츠 메타데이터는 TV-Anytime 표준을 기반으로 하였다.

  • PDF

음악 콘텐츠의 감성추천 서비스 음악과 가사와의 상관관계에 관한 연구 (A Study on Correlation of the sensitivity of the content recommendation service music and lyrics)

  • 이승원;이승연
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2016년도 춘계 종합학술대회 논문집
    • /
    • pp.31-32
    • /
    • 2016
  • 최근 음악 서비스 분야에는 감성추천 서비스가 시행되고 있다. 추천 시스템에 따라 내용 기반 추천 방식과 협업 기반 추천 방식으로 크게 구분할 수 있으며 대부분의 음악 서비스 분야에서는 많은 사용자들로부터 얻은 기호정보에 따라 사용자들의 관심사들을 자동적으로 예측하는 방법인 협업 기반 추천 방식으로 서비스를 운영하고 있다. 이에 따라 협업 기반 추천 방식을 사용하는 대표 음원 사이트 멜론과 벅스에서 음악 추천 서비스의 추천된 음악이 실제 감성과 맞는지 기쁨과 슬픔으로 분류하여 Russell의 감성 모형을 기준으로 가사의 5차 분류를 통해 곡의 감성을 분석하여 카테고리의 추천음악과 가사의 상관관계를 비교 연구하였다. 그 결과, 각 카테고리의 감성추천 음악과 실제 음악의 감성이 일치하는 부분도 있지만, 그 외 다양한 감정들이 도출되었다.

  • PDF

연령 및 프로그램 줄거리를 활용한 콘텐츠 기반 TV 프로그램 추천 시스템 (A Content-based TV Program Recommendation System Using Age and Plots)

  • 방한별;이혜우;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.51-54
    • /
    • 2015
  • 추천 시스템의 대표적인 연구 중 하나인 콘텐츠 기반 추천 시스템 연구는 TV 프로그램이나 영화의 줄거리, 장르, 리뷰 등의 콘텐츠의 메타데이터를 이용한다. 그러나 이러한 연구들은 콘텐츠 관련 정보에만 의존할 뿐, 시청자의 프로파일과 콘텐츠의 정보를 함께 고려하지 않는다. 본 논문에서는 시청자의 프로파일 중 연령과 콘텐츠의 정보인 프로그램의 줄거리를 활용한 TV 프로그램 추천 시스템을 제안한다. 본 추천 시스템은 시청자를 연령에 따라 분류한 후, LDA 알고리즘을 이용하여 시청자의 시청 TV 프로그램의 줄거리를 분류된 나이에 따라 각각의 줄거리 토픽 모델로 생성한다. 이를 기준으로 시청자가 원하는 시간대에 방송되는 프로그램들의 줄거리 토픽벡터와 시청자의 선호도 토픽벡터의 유사도를 비교해 가장 유사도가 높은 TV 프로그램을 시청자에게 추천하는 방식이다. 본 논문에서는 연구의 효용성을 검증하기 위해 줄거리만을 사용한 경우와 줄거리와 연령을 동시에 활용한 경우를 비교 실험하였다. 실험을 통해 프로그램의 줄거리만을 사용한 경우보다 연령을 동시에 활용한 경우의 추천 시스템 성능이 개선된 것을 확인할 수 있었다.

  • PDF

딥러닝 기반 방송 콘텐츠 클래스 분류 시스템 개발 (Development of Broadcast Content Class Classification System based on Deep Learning)

  • 김신;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.334-335
    • /
    • 2018
  • 최근 수 년간 비디오 콘텐츠 소비 공간이 인터넷으로 확장되며 지능적 비디오 콘텐츠 추천 기술 개발이 진행되어 왔다. 하지만 지능적 비디오 콘텐츠 추천 기술은 사용자의 기호나 업로드된 비디오 콘텐츠의 제목 등을 기반으로 하여 비디오 콘텐츠 클래스에 대한 분석 없이 유사한 비디오 콘텐츠를 탐색하고 추천해주는 기술이 대부분이다. 본 논문에서는 지능적 콘텐츠 추천을 위한 딥러닝 기반 방송 콘텐츠 클래스 분류 시스템을 제안한다. 방송 콘텐츠 내 영상 정보를 이용하여 방송 콘텐츠 클래스를 분류하며 높은 분류 정확도를 보여주는 것을 확인할 수 있다.

  • PDF

스마트 환경에서의 사용자 상황인지 기반 지식 필터링을 이용한 콘텐츠 추천 시스템 (Content Recommendation System Using User Context-aware based Knowledge Filtering in Smart Environments)

  • 이동우;김웅수;염근혁
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권2호
    • /
    • pp.35-48
    • /
    • 2017
  • 스마트 환경에서는 센서, 디스플레이, 스마트폰 등 각종 장치들이 존재하며, 이러한 장치들을 이용하여 다양한 콘텐츠가 제공될 수 있다. 그러나 방대한 양의 콘텐츠가 다수의 사용자들에게 제공되고 있지만, 대부분의 환경에서 사용자에 대한 고려가 없거나 위치, 시간 등의 간단한 요소만을 고려하고 있어 사용자를 위한 유의미한 콘텐츠 제공에 한계가 있다. 이에 본 논문에서는 사용자에게 맞춤형 콘텐츠를 제공하기 위해 사용자, 장치, 콘텐츠가 가진 상황 정보를 인지하여 콘텐츠를 추천할 수 있는 시스템인 상황인지 기반 콘텐츠 추천 시스템을 제시한다. 상황인지 기반 콘텐츠 추천 시스템은 스마트 환경의 컨텍스트를 추론하고 사용자와 콘텐츠의 정보를 이용하여 사용자의 콘텐츠별 선호도를 산출하고 사용자에게 콘텐츠를 추천한다. 이러한 시스템의 프로세스를 구축하기 위해 도메인 지식을 온톨로지 모델로 구축하고, 콘텐츠 추천 시스템을 설계 및 구현하기 위한 방법을 제시한다. 그리고 부산의 센텀시티를 도메인으로 하여 사례 연구를 진행하며 산출된 0.8730의 평균 절대값 오차를 이용하여 제시한 시스템의 콘텐츠 추천 성능의 우수성을 검증하였다.