• Title/Summary/Keyword: 콘크리트 펌프

Search Result 59, Processing Time 0.024 seconds

Causes of accidents and preventive measures due to defects in pump car booms (펌프카의 붐대 결함에 의한 사고원인과 방지대책)

  • Cho Choonhwan
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 2024
  • Pump car is an equipment that transports concrete products as needed to the place where they are poured. In order to pour a large amount of concrete in a short period of time, using a pump car is the most efficient in terms of economic efficiency and quality control. However, recently, many casualties have occurred due to boom damage during concrete pouring, so this study suggests that improvements are needed in the equipment manufacturing stage, inspection standards for old equipment, and equipment rental system. The reason is that, as a result of the finite element analysis of the pump car, the significant stress acting at the second stage of the boom and the maximum stress at the top of the boom were found to be 895.39 MPa, and M.S. Since it was evaluated the lowest at 0.04, the need for reinforcement was recognized. And it was confirmed that the 2nd stage boom was the most stressful and vulnerable part of the 1st to 5th stage booms. Therefore, it is necessary to increase the thickness and rigidity of members at the design and manufacturing stage, and to reinforce the steel plates of currently used equipment. In addition, it is urgent to establish a system that makes non-destructive testing mandatory for all general construction machinery and holds inspection agencies responsible for missing boom defects during non-destructive testing and regular inspections.

Absorption Properties of Coarse Aggregate according to Pressurization for Development of High Fluidity Concrete under High Pressure Pumping (고압송용 고유동콘크리트 개발을 위한 가압에 따른 굵은골재의 흡수 특성)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.122-129
    • /
    • 2016
  • In this study, we developed a pressing device which can reproduce the pressure of concrete inside the conveying pipe as a part of the basic study to development of high fluidity concrete under high pressure pumping. Using this pressing device, we evaluated a absorption properties of aggregate that are crushed coarse aggregate, river gravel and lightweight coarse aggregate according to pressure of coarse aggregate and aggregate inside a high fluidity concrete, focused on the reduction of unit water quantity by pressure. In addition, it was evaluated the compressive strength of high fluidity concrete about before and after of pressive. Test a result, case of condition under the high pressure of 250 bar, absorption ratio of crushed coarse aggregate and river gravel were not increased above the surface absorption, absorption ratio of lightweight coarse aggregate was increased than the surface absorption.

The Experimental Study on improvement the pump sending of the light weight concrete using the light weight aggregate (경량골재를 사용한 경량콘크리트의 펌프압송 성능향상에 관한 실험적 연구)

  • Park Dae-Oh;Seo Chee-Ho;Ji Suk-Won;Lee Jin-Woo;Shin Sang-Tae;Jee Suk-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.23-26
    • /
    • 2006
  • The study about the concrete to use recently a light weight aggregate, processed actively. And concrete pumping with a high pressure pump has been popularized, the mechanical development, such as high pressure pumps or pipes, is progressing rapidly. Concrete placing by pumping has the advantage of the reduction of the construction period with workability, easiness of work and the increase of placing, but the quality variation of concrete is caused by pumping is seldom considered, including the increase of the pipe length by high-rising and large-sizing, there by the loss of the unit quantity of water, with pumpability or workability deteriorated. In this research, we will compare and analyze before pumping and after pumping samples of ready-mixed light weight concrete. The result of study as follow. The case of a light weight concrete which the low slump is more decrement compared with high slump light weight concrete in after pumping samples. After pumping the water by pressure of a pump was absorbed to the aggregate inside, and it showed an increase of compression strength about $5{\sim}20%$.

  • PDF

Properties of High Strength Concrete before and after Pumping in Response to Strength Level and Pumping Height (초고층 건축물에서 고강도 콘크리트의 강도 및 압송높이 변화에 따른 펌프 압송 전·후의 물성평가)

  • Jung, Sang-Woon;Lee, Hong-Kyu;Jo, Man-Ki;Kim, Gyu-Dong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.274-275
    • /
    • 2014
  • As the increase amount of high rise building, equipments for high rise building have been extensively studied. However quality problems caused as the pumping of concrete including loss of flowalility, air content and increasing of the temperature. In this study, fundamental performances of the 80 MPa concrete before·after pumping has been tested. Results showed slump flow increased after pumping temperature of concrete also increased after pumping. Results also shown air content all satisfied the target range and compressive strength of concrete increased about 20 % after pumping, All the performances satisfied the standard for 80 MPa.

  • PDF

A study on the fire resistance properties of high strength concrete by incorporation of Polymix fiber (폴리믹스 혼입에 의한 고강도 콘크리트의 폭렬방지 방안에 관한 연구)

  • Kim, Jeong-Jin;Lee, Sang-Hyun;Lee, Joo-Ho;Shin, Jae-Kyung;Park, Jong-Ho;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.395-396
    • /
    • 2010
  • The purpose of this research is that development of fire-high resistance concrete for high-rise buildings is carried out with a test, which is for confirmation of fire-resistance capacity of 80MPa high-strength concrete. In this test, self-developed Polymix to confirm fire-resistance capacity of high-strength concrete in domestic high-rise buildings recently is applied.

  • PDF

Development of Slurrystore System with Enamel Ware. (법랑을 이용한 음식물 쓰레기 및 퇴비 발효조 개발)

  • 한두희
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.353-355
    • /
    • 2003
  • 일반직으로 액비 탱크 등은 콘크리트를 이용하여 지하에 시공하므로 빗물 등이 흘러 들어가기 쉽고, 습기등에 의하여 콘크리트가 부식되기 쉬우며 이로 인하여 오폐수가 지하로 스며들어 지하수를 오염시킬 수 있다. 이를 해결하기 위하여 액비탱크를 법랑을 이용하여 지상에 건설하여 침출수를 원천적으로 방지하고 미려한 색상으로 인한 자연 친화적인 저장 장치를 활용하여, 지하에 일시 저장한 분뇨를 펌프를 사용하여 지상으로 끌어 올려 숙성 발효시키면 우수한 액비를 생산 활용할 수 있다.

  • PDF

Estimation of Pump Induced Vibration Force by Frequency Response Function (진동수응답함수 측정에 따른 펌프 가진력 산정)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.103-112
    • /
    • 1999
  • This is study to estimate the pump induced vibration in time and frequency domain by frequency response function between two points in case of 20Hp and 50Hp centrifugal pumps. The frequency response function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response function and frequency response function by complex calculation. And it is compared with the theoretically estimated values and it is suggested that the amplitude of vibration with main frequency is about 10~25% of pump and motor weight, and the magnitude of unbalanced mass is about 30~60% of pump and motor weight to estimated vibration force in time domain. There are the other kinds of vibration components with different frequency values of 2~3 times of its main frequency, and these kinds of information are used to control the tuning ratio between operating frequency of pump and structural frequency of concrete slab.

  • PDF