• Title/Summary/Keyword: 콘크리트 궤도

Search Result 229, Processing Time 0.025 seconds

Development of Device to Resist Horizontal Displacement of Asphalt Concrete Track (아스팔트콘크리트 궤도용 궤도변위 저항 장치 개발)

  • Lee, Seonghyeok;Yoon, Wooyong;Bae, Younghoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.744-754
    • /
    • 2016
  • Asphalt concrete track (ACT) is a track system connecting wide sleepers and concrete panels on top of an asphalt concrete layer; such a system requires adequate resistance force against various longitudinal and lateral external loads. In this study, a series of experiments were carried out to assess the longitudinal and lateral resistance force of a wide sleeper and concrete panel type ACT. The required shear resistance force of the horizontal displacement restraint device (HDRD) was evaluated. Furthermore, a concrete block type anchor and a steel pipe type anchor were developed as HDRDs. The shear resistance force was decided based on the experimental results of horizontal shear tests for each anchor system. In addition, proper numbers and arrangement design guidelines for the HDRDs were suggested considering the shear resisting capacity and economics for HDRDs applied to ACT.

Determination of the Upper Limit of Railpad Stiffness in Concrete Track of High-Speed Railways Considering the Running Stability of Train (주행안정성을 고려한 고속철도 콘크리트궤도 레일패드강성 상한값 결정)

  • Yang, Sin-Chu;Jang, Seung-Yup;Kim, Eun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.485-488
    • /
    • 2011
  • 본 연구에서는 경부고속철도의 콘크리트궤도에서 열차주행안전측면에서 관리해야할 레일패드강성의 상한값을 차량 및 궤도의 동특성과 운영환경을 고려하여 결정하는 방법을 제시하였다. 차량과궤도의 상호작용의 해석의 중요 입력파라메타인 궤도틀림과 관련하여 프랑스 및 독일에서 제시한 궤도틀림 PSD(Power Spectral Density)와 경부 1단계구간 콘크리트궤도에서 계측한 궤도틀림 자료를 통하여 얻은 PSD를 기초로 하여 넓은 범위의 주파수영역에서 적용할 수 있는 콘크리트궤도의 궤도틀림 PSD를 제시하였다. 제시된 PSD 기준모델을 사용하여 시간영역에서의 궤도틀림 입력을 Random Generation을 통하여 구한 후 개발된 차량-궤도 상호작용해석 기법을 사용하여 레일패드에 따른 윤중감소율을 산정하였다. 산정된 윤중감소율에 대하여 국내 철도차량 안전기준에 관한 규칙의 탈선계수 규정을 적용하여 주행안전측면에서 허용할 수 있는 레일패드강성의 상한값을 제시하였다.

  • PDF

Field Model Tests on Frost Penetration Depths and Frost Heave Amounts in Ballast track and Concrete track (현장모형실험을 통한 자갈궤도와 콘크리트궤도의 동결심도 및 동상량 측정)

  • Kim, Young-Chin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.506-514
    • /
    • 2016
  • Experimental ballast track and concrete track were installed on the railway site and the frost penetration depth and the frost heave amount in the winter were measured. As a result, when the freezing index was the same, the frost penetration depth of concrete track was deeper than that of ballast track. Furthermore, when an XPS and polyethylene aggregate layer was installed below the ballast track, the frost penetration depth of the ballast track decreased significantly; in the case of the concrete track, the frost penetration depth decreased when the thickness of the subbase increased. Meanwhile, the frost heave amount also decreased when an XPS and polyethylene aggregate layer was installed below the ballast track ; in the case of the concrete track, the frost heave amount decreased when the thickness of the subbase increased.

Optimal Vertical Stiffness of Fastener of Concrete Track in High-Speed Railway (고속철도 콘크리트궤도 체결구 최적 수직강성)

  • Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • In this study, to minimize both the costs associated with track maintenance and the energy consumption for train operation, a numerical method that evaluates the optimal vertical stiffness of a fastener for concrete track is presented. A progress model of the track damage is established in order to calculate the concrete track maintenance cost according to the fastener stiffness. Also, the quantitative relationship between the progress of the track damage and the maintenance of the concrete track is derived. The wheel load is more exactly evaluated by using the advanced vehicle-track interaction model, which can precisely consider the behaviors of the track components. An optimal range for the stiffness of the fastener, a range that is applicable to the design of concrete track for domestic high speed lines, is proposed.

3D Dynamic Finite Element Analysis and Corresponding Vibration of Asphalt Track Considering Material Characteristics and Design Thickness of Asphalt Concrete Roadbed Under Moving Load (아스팔트 콘크리트 설계두께 및 재료특성을 반영한 아스팔트 콘크리트 궤도 3차원 이동하중 동적해석 및 진동특성)

  • Lee, SeongHyeok;Seo, HyunSu;Jung, WooYoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • The asphalt-concrete trackbed system has many advantages in terms of maintenance and economics. However, methods to investigate practical use corresponding to the development of the trackbed system must be developed. The primary objective of this study was to evaluate the dynamic performance of the asphalt system in accordance with both the elastic and viscoelastic material characteristics and design thickness of the asphalt trackbed. More specifically, in order to reduce the uncertainty error of the Finite Element(FE) model, a three-dimensional full scale FE model was developed and then the infinite foundation model was considered. Finally, to compare the condition of viscoelastic materials, performance evaluation of the asphalt-concrete trackbed system was used to deal with the dynamic amplification factors; numerical results using isotropic-elastic materials in the FE analysis are presented.

Characteristics of Vibration of Track and Vehicle Body According to Type of Track in Tunnel of High-Speed Railway Lines (고속철도 터널에서의 궤도 형식에 따른 궤도와 차체의 진동 특성)

  • Kim, Man Cheol;Jang, Seung Yup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.125-132
    • /
    • 2006
  • In the present study, in order to elucidate the vibration characteristics of track and train body according to the type of track in tunnel, the vibration accelerations of the track and the KTX train body have been measured in tunnels of Kyong-Bu high-speed railway(HSR) lines, and the frequency analysis of the measured data has been performed. From this, the vibration characteristics of the track components such as rail, sleeper, ballast and slab, the tunnel lining and the vehicle body according to the type of track are investigated and their relation is analyzed. The test results show that the vibration of rail and vehicle body rapidly increases at 80Hz in tunnel, and that is much higher in the tunnel on which the concrete slab track is placed. According to the results of the present study, rail supporting stiffness can variate the vibration characteristics of the total system including the vehicle, and therefore the correlation between the vibration of vehicle should be taken into account to determine the supporting stiffness of the slab track.

Evaluation of Shear Load Carrying Capacity of Lateral Supporting Concrete Block for Sliding Slab Track Considering Construction Joint (타설 경계면을 고려한 슬라이딩 궤도 횡방향 지지 콘크리트 블록의 전단 내하력 평가)

  • Lee, Seong-Cheol;Jang, Seung Yup;Lee, Kyoung-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • Recently several researches have been conducted to develop sliding track system in which friction between concrete track and bridge slab has been reduced. This paper investigated shear load carrying capacity of lateral supporting concrete block which should be implemented to resist lateral load due to train in sliding track system. In order to evaluate shear load carrying capacity of lateral supporting concrete block, analytical model has been developed considering concrete friction and rebar dowel action along construction joint. The proposed model predicted test results on the shear load carrying capacity from literature conservatively by 13~23% because effect of aggregate interlock along crack surface was neglected. Since construction joint status is ambiguous on construction site, it can be concluded that the proposed model can be used for reasonable design of lateral supporting concrete block. Based on the proposed model, design proposal for lateral supporting concrete block has been established.

Analysis of Dynamic Behavior of Railway Bridge with Concrete Track (콘크리트궤도 부설 철도교량의 동적거동 분석)

  • Min, Rak-Ki;Sung, Deok-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.147-153
    • /
    • 2012
  • Precise estimation f a structure's dynamic characteristics is indispensable for ensuring stable dynamic response during life time especially for the structures which can experience resonance such as railway bridges. Especially, concrete track can change the modal properties of the railway bridge, through the contribution of stiffness as well as mass effects, generally only the mass effect is considered in dynamic analysis of the railway bridge. In this paper, static and dynamic behaviors of railway bridge with concrete track were investigated through experimental study. Also, numerical analysis was performed about considering only mass of concrete track and together with stiffness and mass of concrete track. These were compared with experiment value. Numerical analysis value considering together with stiffness and mass of concrete track was similar experiment value. Therefore, when dynamic analysis of railway bridge with concrete track is performed, the contribution of stiffness as well as mass effects for concrete track is considered.

A Study on Estimation Method of Concrete Sleeper Strength for Sleeper Floating Track using Rebound Hardness Test Method (반발경도법을 이용한 침목플로팅 궤도의 콘크리트 침목 강도추정 기법 연구)

  • Chung, Jee-Seung;Lee, Jeong-Sug;Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.277-282
    • /
    • 2022
  • The sleeper floating track (STEDEF) in this study was a track type in which a very soft resilience pad was installed under a relatively thin concrete sleeper (RC Block). Therefore it was expected that the resilience pad could affect the estimation results of the concrete strength. In this study, field applicability evaluation was performed to apply the rebound hardness test method, which was a general method for estimating the compressive strength of concrete in civil structures, to concrete sleepers of railway tracks. In order to analyze the strength estimation technique of concrete sleepers reflecting the characteristics of track structures different from those of civil structures, the parameter experiments that could affect the strength estimation results of concrete sleepers in a serviced line were performed. As a result of the study, the appropriate hitting position was suggested considering the shape of the concrete sleeper, and the difference in strength estimation results according to the condition of the concrete sleeper and supporting conditions was derived.

Evaluation on Damage Effect of Concrete Track induced by Underground Structure Displacement Behavior (지하구조물 변위거동에 따른 콘크리트궤도의 손상영향 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.839-844
    • /
    • 2024
  • This study analytically analyzed the impact of underground structure displacement behavior on track damage due to adjacent excavation work, ground deterioration, and changes in groundwater level. The concrete track that was the subject of the study was analyzed for sleeper floating track(STEDEF) and precast concrete slab track(B2S). Sleeper floating track is a track structure in which the concrete bed and sleepers are voided. precast concrete slab track is a track structure that induces the elastic behavior of the rail by assembling rails and fasteners using slabs. For numerical analysis, each concrete track, from rail to concrete bed, was modeled as three-dimensional elements. In addition, the displacement behavior of the underground structure was set as a variable to analyze the damage effect on the concrete bed. Using numerical analysis, the concrete bed stress due to uplift and subsidence was analyzed, and the level of crack effect was analyzed by comparing it to the tensile strength and shear strength. As a result of the analysis, it was found that the sleeper floating track was more vulnerable than the precast concrete slab track when the same uplift and subsidence occurred. In addition, uplift and subsidence, it was analyzed that the cracks range in the sleeper floating track was large.