• Title/Summary/Keyword: 콘크리트의 건조수축

Search Result 477, Processing Time 0.03 seconds

Restrained Shrinkage Properties of Polypropylene Fiber Reinforced Rapid-Setting Cement Concrete (합성섬유보강 초속경 콘크리트의 구속건조수축 특성)

  • 원치문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • The rapid-set cement concrete causes high hydration temperature and nay result in a high drying shrinkage and shrinkage-induced cracking. This problem may be fixed by incorporating polypropylene fibers in rapid-set cement concrete, because of increased toughness, resistance to impact, corrosion, fatigue, and durability. A series of concrete drving shrinkage tests was peformed in order to investigate the shrinkage properties of polypropylene fiber reinforced concrete with experimental variables such as concrete types, fiber reinforcement, W/C ratio, with and without restraint. Uni-axially restrained bar specimens were used for the restrained shrinkage tests. The results were as follows; The dry shrinkage of rapid-set cement concrete was much lessor than that oi OPC, probably because of smaller weight reduction rate by early hydration and strength development. The constraint and bridging effects caused by polypropylene fibers were great for the rapid-setting cement concrete when compared with that of plain concrete, and this resulted In increased resistance against tensile stress and cracking.

Differential Drying Shrinkage of concrete an Early Ages Considering Self-desiccation (자체건조를 고려한 초기재령 콘크리트의 부등건조수축)

  • 김진근;이칠성
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.197-204
    • /
    • 1998
  • 초기재령에서 외기에 노출된 콘크리트는 수분확산으로 인하여 부등건조수축이 발생하고, 또한 자체건조로 인하여 자기수축도 발생한다. 따라서 콘크리트 재부의 수축변형도는 이러한 자기수축을 포함하고 있으므로 이를 고려해야 한다. 본 연구에서는 초기재령에서 콘크리트 강도에 따라 자기수축의 영향을 고려하여 부둥건조수축에 대한 실험과 해석을 수행하였다. 또한 콘크리트 내부의 부등수분분포로 인한 수축변형도에 대하여 실험결과와 해석결과를 비교하여, 해석방법의 타당성을 검증하였다. 실험 및 분석결과에 의하면 저강도콘크리트는 수분확산으로 인하여 주로 수축현상이 일어나고 자기수축의 영향은 거의없었다. 그렇지만 고강도 콘크리트는 자기수축에 의해서도 영향을 받았다. 그리고 콘크리트의 부등건조수축은 강도에 따라 큰 차이를 나타냈다. 또한 제시한 해석방법에 의한 해석결과는 실험결과를 잘 예측하였다.

Study on Prediction of Drying Shrinkage of Concrete using Shrinkage Reducing Agent (수축저감제를 사용한 콘크리트의 건조수축 예측에 관한 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2016
  • Shrinkage Reducing Agent(SRA) was developed in order to control drying shrinkage cracks in concrete, and the use of SRA is increasing since it can control drying shrinkage cracks and improve the quality of concrete structures. Although there are many types of prediction equations of drying shrinkage strain, there is no prediction method which can consider the effect of SRA up to the present. Therefore, it is impossible to predict the tensile stress generated by drying shrinkage of SRA concrete, and to investigate the quantitative serviceability limit state of SRA concrete. In this study, the drying shrinkage of SRA concrete was investigated by experiment and analysis in order to suggest the predictability of drying shrinkage of SRA concrete. As a result, AIJ model, ACI model, GL2000 model showed there was a correlation between the predicted values and the experimental values within the error range of ${\pm}10%$. However, CEB-FIP model and B3 model underestimated the experimental values.

Theoretical Prediction for Drying Shrinkage of Concrete (콘크리트 건조수축이 이론적 예측에 관한 연구)

  • 한만엽
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.157-164
    • /
    • 1993
  • 콘크리트내의 물의 흐름의 양과 방향을 결정하는 수리에너지의 분포는 그양의 변화에 따라 콘크리트의 수축과 팽창을 지배하는 응력의 일종이다. 따라서 이 수리에너지와 건조수축 변형율 사이에는 직접적인 연관관계가 있다. 본 논문에서는 건조수축과 수리에너지 사이의 이론적인 관계를 논리적으로 유도하여 두 개의 변수사이의 상관관계를 밝히는 이론식을 유도하였다. 본 논문에서는 세 개의 건조수축 작동구조(메카니즘)중 평상적인 상대습도하에서, 즉 50%이상에서, 작용하는 작동구조만을 고려하였다. 열전 쌍 싸이크로미터를 콘크리트 슬라브에 매설하여 수리에너지를 측정하고 동시에 건조수축량을 측정하여 두 측정값사이의 상관관계를 밝힘으로서 유도된 이론을 증명하고자 하였다. 측정결과는 본 이론의 타당성을 증명하는 동시에 본 이론이 실제 구조물의 건조수축량의 측정에 이용될수 있는 방법도 동시에 보여 주었다.

Shrinkage Properties of High Performance Concrete with Shrinkage Reducing Agent (수축저감제를 사용한 고성능 콘크리트의 수축특성)

  • Koh, Kyung-Taek;Kim, Do-Gyeum;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.181-188
    • /
    • 2005
  • Generally, high performance concrete has characteristics such as low water-cementitous material ratio, lots of unit binder powder, thus the drying shrinkage and autogenous shrinkage are tend to be increased. The purpose of this study is to investigate the effect of the glyclos based shrinkage reducing agent on the drying shrinkage and autogenous shrinkage of high performance concrete with 30% of water-cemetitious material ratio as a study to develop the technology to reduce the concrete shrinkage. Test results show that the drying and autogenous shrinkage of high performance concrete are reduced by about 20~35% at the mixing ratio of shrinkage reducing agent of 0.5%, and 1.0%, compared with plain concrete. Therefore, it analyze that the using of shrinkage reducing agent is effective to reduce the drying shrinkage and autogenous shrinkage of high performance concrete.

Modelling of Drying Shrinkage for Different Environmental Conditions (환경인자를 고려한 건조수축의 예측모델 개발)

  • 한만엽
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.111-120
    • /
    • 1996
  • Drying shrinkage is a very important properties of concrete, which is affected by environmental conditions. The environmental conditions are temperature, relative humidity, and wind speed, which is quite variable and its effct on drying shrinkage is quite complex, too. In this study, environmental effects on drying shrinkage wrer integrated into one variable-evaporation rate. In several different environmental conditions, evaporation rate was measured with Evaporometer and compared with PCA chart, and also compared with measured drying shirnkage to verify the possibility of being a single parameter. The results are summarized in a prediction chart and prediction equation for drying shrinkage.

Drying Shrinkage Behaviors of Concrete with Powder Type Shrinkage Reducing Agent and Fly Ash (분말형 수축저감제와 플라이애쉬가 혼입된 콘크리트의 건조수축 거동)

  • Min, Kyung-Hwan;Lee, Dong-Gyu;Jeong, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3535-3541
    • /
    • 2015
  • In this study, series of tests were performed for drying shrinkage characteristics of concrete with power type shrinkage reducing agent (SRA) and fly ash as a part of research to reduce drying shrinkage of concrete. Firstly, for the mechanical properties, a target strength was acquired securely. In the unrestraint shrinkage tests, the SRA decreased the drying shrinkage about $200{\mu}{\varepsilon}$. Lastly, in the ring tests, due to the tensile creep effect, the concrete with SRA showed the cracking times as much again as the concrete with ordinary Portland cement only did.

Shrinkage Stress Analysis of Concrete Slab in Multi-Story Building Considering Construction Sequence (시공단계를 고려한 고층건물 콘크리트 슬래브의 건조수축 응력해석)

  • 김한수;정종현;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.457-465
    • /
    • 2001
  • Shrinkage strains of concrete slab in multi-story building are restrained by structural members such as columns or walls, then can induce cracks due to excessive shrinkage stress over tensile strength of member. In this study, a shrinkage stress analysis method of concrete slab in multi-story building considering not only material properties such as shrinkage, creep and reinforcement effect but also construction sequence is proposed. Tensile stresses of slab due to shrinkage are calculated by converting shrinkage strains into equivalent temperature gradients, creep that can release shrinkage stress can be considered by replacing the modulus of elasticity of concrete, Ec , to the effective secant modulus of elasticity of concrete, E$\_$eff/ Reinforcements are also considered by modeling them as equivalent beam elements in FEM program. Results of step by step analysis reflecting construction sequence summed up to calculate stresses of the whole building considering that shrinkage stresses of the building come from the difference of shrinkage between i-th floor and (i-1)-th floor, named as effecitive shrinkage, and it can be varied by construction sequence. The results of 10-story example building show that shrinkage stresses of lower floors are greater than those of upper floors, that is, stresses of lower floors(1∼2FI.) exceed modulus of rupture of concrete, but stress ratios of higher floors are in the range of 27.9∼92.8%.

Curvature and Deflection of Reinforced Concrete Beams due to Shrinkgae (건조수축에 의한 철근콘크리트 보의 곡률 및 처짐)

  • 김진근;이상순;양주경;신병천
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.261-268
    • /
    • 1998
  • Deflections due to shrinkage are frequently ignored in design calculation. Especially for thin member, shrinkage often causes considerable deformations as wellas appreciable stress changes. Several methods for computing shringkage curvature have been proposed by many researchers. Some of the approximte methods widely used in the recent years are the equivalent tensile force method, Miller's method and Branson's method. These methods were, however, somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, an approximate method for computing shrinkage curvature and deflection is proposed. Curvature due to shrinkage is derived from the requirements of strain compatibility and equilibrium of a section and the age-adjusted effective modulus method. The proposed method is verified by comparison with several experimental measurements. The correlations between calculated and measured curvatures is very good.

A Study on Strength Development and Drying Shrinkages of Recycled Concrete (재생콘크리트의 강도발현 및 건조수축 특성연구)

  • 이진용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.217-223
    • /
    • 1997
  • 재생콘크리트의 압축강도와 휨강도는 재생골재의 혼입량이 증가할수록 감소하였으며 플라이애쉬를 혼화재로 사용할 때 그 양이 증가할수록 재생콘크리트의 조기 압축강도는 떨어졌다. 골재원에 따른 압축강도는 재생골재의 혼입량이 적을수록, 양생기간이 길어질수록 증가하엿으나, 전반적으로 비슷한 강도변화의 경향을 보여주고 있다. 재생콘크리트의 휨강도 발현은 보통 콘크리트와 비슷하나, 휨강도에 대한 압축강도비는 보통 콘크리트에 비하여 낮았다. 재생콘크리트의 건조수축은 재생골재의 혼입량이 증가할수록 증가하였으며 , 특히 재령2주와3주사이에 건조수축량이 보통 콘크리트에 비해 월등히 높았다.