• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,392, Processing Time 0.03 seconds

An Experimental Study on the Properties of Engineering and Shrinkage Cracking Reduction of Fiber Reinforced Concrete Using Recycled Fine Aggregate (섬유보강 순환잔골재 콘크리트의 공학적 특성 및 수축균열저감특성에 관한 실험적 연구)

  • Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Moo-Han;Lee, Do-Heun;Song, Ha-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.82-89
    • /
    • 2009
  • Recently, the study is progressing actively about manufacture skill of concrete for promoted recycled aggregate and concrete made into recycled aggregate in the construction production field. But, application and study about recycled fine aggregate insufficient compared to recycled coarse aggregate. So, in this study, it presents basic data for development of environmental load reduction fiber reinforcement recycled fine aggregate concrete by comparison and investigation about engineering properties and shrinkage cracking of fiber reinforcement recycled find aggregate concrete for increasing shrinkage cracking reduction and long term stability of environmental load reduction concrete used recycled fine aggregate. In the result of the study, compared to natural fine aggregate, a crack-extent increased by applying recycled fine aggregate, moreover, as a water cement ratio increased, the crack size increased, as well. In addition, it's shown that the specimen mixed with PVA and Nylon, among all kinds of fibers, showed the smallest crack size, so it's verified that the mix of fiber had an effect on decreasing crack-extent.

  • PDF

A Study on the Shear Strengthening Characteristic of Reinforced Concrete T-shaped Beams (철근콘크리트 T형보의 전단 보강 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Moon, Keum Hwan;Yoo, Myeong Hwan;Lee, Chang Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.10-18
    • /
    • 2012
  • Most of studies on existing strengthening methods were mainly on increase of stiffness and strength of shear strengthening to rectangular beam. As concrete of beam and slab is poured simultaneously on the characteristics of construction in reinforced concrete beam-slab structure, adjacent slab uniformed after hardening has T-shaped beam cross section which makes the flange of beam, enhances the stiffness of the beam and widens the area supporting compressive strength, but available data of flexural behavior of T-shaped beam are lacking. In this research the T-shaped beams would be made, then the reinforced effects and structural properties can be estimated according to the kinds of reinforced materials and reinforced position. The conclusions are shown as below. To sum up the experimental results, The specimen which was reinforce by CB embedded inside of concrete indicated excellent resistive behavior, internal force and stiffness when it was destroyed. The steel plate reinforced specimen of stiffness and internal force were increase but it expressed lower reinforce effects because of lowering anchored force between concrete. Fiber sheet strengthening showed superior effects but the interfacial delamination was found due to the lack of anchored force in destruction. So the measure is needed now.

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

Seismic Fragility Evaluation of Chimney Structure in Power Plant by Finite Element Analysis (유한요소 해석을 통한 발전소 연돌 구조물의 지진취약도 분석)

  • Kwon, Gyu-Bin;Kim, Jin-Sup;Kwon, Min-Ho;Park, Kwan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.276-284
    • /
    • 2019
  • Seismic research on bridges, dams and nuclear power plants, which are infrastructure in Korea, has been carried out since early on, but in the case of structures in thermal power plants, research is insufficient. In this study, a total of 192 dynamic analyzes were performed for 16 actual seismic waves and 12 PGAs. As a result, the probability of failure increased as the PGA value increased for each applied seismic wave, but it was different for each seismic wave. As a result, at 0.22G, the ratio of the compressive limit reached to the limit state was 25% and the ratio of the relative displacement reached the limit state was 13%. So, the probability of collapse due to compressive failure Is higher. Therefore, the fragility curve of the chimney which is the subject of this study can be used as a quantitative basis to determine the limit state of the target structure when an earthquake occurs and to be used for the safety design of the thermal power plants.

Structural Performance of the RC Boundary Beam-Wall System Subjected to Axial Loads (축하중이 작용하는 철근 콘크리트 경계보-벽체 시스템의 압축성능 평가)

  • Han, Jin-Ju;Son, Hong-Jun;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.57-64
    • /
    • 2022
  • This study investigated the structural performance of the RC boundary beam-wall system subjected to axial loads that required lesser construction quantity and smaller floor height in comparison with the conventional RC transfer girder system. Four specimens of 1/2 scale were constructed, and their peak strengths under axial loads and failure characteristics were compared and analyzed. Test parameters included the ratio of the lower to the upper wall length, lower wall thickness, and stirrup details of the lower wall. In addition, three-dimensional nonlinear finite element analysis was performed to verify the effectiveness of the boundary beam-wall system. The peak strength of each specimen was similar to the nominal axial strength of the lower wall, indicating that the axial load was transferred smoothly from the upper to the lower wall. The contribution of the lower wall cross-section was high if the ratio of the lower to the upper wall length was small; the contribution was low if the out-of-plane eccentricity existed in the lower wall. The specimen with smaller stirrup distance and cross-ties in the lower wall showed higher initial stiffness and peak load than other specimens.

Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars (고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도)

  • Kim, Young-Rok;Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.111-117
    • /
    • 2019
  • Shear experiments were carried out to evaluate shear performance of SFRC deep beams with end-anchorage of SD600 high strength headed reinforcing tensile bars. The experimental variables include the end-anchorage methods of tensile bars (headed bar, straight bar), the end-anchorage lengths, and the presence of shear reinforcement. Specimens with a shear span ratio of 1 showed a pattern of the shear compression failure with the slope cracks progressed after the initial bending crack occurred. Specimens with end-anchorage of headed bars (H-specimens) showed a larger shear strengths of 5.6% to 22.4% compared to straight bars (NH-specimens). For H-specimens, bearing stress reached 0.9 to 17.2% of the total stress of tensile bars up to 75% of the maximum load, and reached 22.4% to 46%. This shows that the anchorage strength due to the bearing stress of headed bars has a significant effect on shear strength. The experimental shear strength was 2.68 to 4.65 times the theoretical shear strength by the practical method, and the practical method was evaluated as the safety side.

Pseudo-Static Behaviors of U-shaped PSC Girder with Wide Flanges (확폭플랜지를 갖는 U형 프리스트레스 거더의 유사정적거동)

  • Rhee, In-Kyu;Lee, Joo-Beom;Kim, Lee-Hyeon;Park, Joo-Nam;Kwak, Jong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.993-999
    • /
    • 2008
  • A girder height limitation is the critical parameter for rapid construction of bridge deck and construction space limitation especially in urban area such as high population area and high density habitats. A standard post-tensioned I-shaped concrete girder usually demands relatively higher girder height in order to retain sufficient moment arm between compression force and tensile force. To elaborate this issue, a small U-shaped section with wide flanges can be used as a possible replacement of I-shaped standard girder. This prestressed concrete box girder allows more flexible girder height adjustment rather than standard I-shaped post-tensioned girder plus additional torsion resistance benefits of closed section. A 30m-long, 1.7m-high and 3.63m-wide actual small prestressed concrete box girder is designed and a laboratory test for its static behaviors by applying 6,200kN amount of load in the form of 4-point bending test was performed. The load-deflection curve and crack patterns at different loading stage are recorded. In addition, to extracting the dynamic characteristics such as natural frequency and damping ratio of this girder, several excitation tests with artificial mechanical exciter with un-symmetric mass are carried out using operational frequency sweep-up. Nonlinear finite element analysis of this 4 point bending test under monotonic static load is investigated and discussed with aids of concrete damaged plasticity formulation using ABAQUS program.

  • PDF

Fracture Toughness of a Center Notched Concrete Disk (중앙에 노치가 있는 콘크리트 디스크의 파괴인성)

  • Park Hyun-Jae;Jang Hee-Suk;Lee Seung-Hoon;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.851-858
    • /
    • 2004
  • Purpose of this paper is to determine the appropriate size of a center notched disk specimen for mode I fracture toughness $K_{IC}$. For this purpose, mode I test results with various sizes of center notched disk were compared with the RILEM three-point-bend test ones. Compressive strength of concrete used in this paper was 44.9 MPa. Diameters of 200, 300, 400 mm, thickness of 75, 100, 125 mm, and notch length ratios an of 0.3, 0.4, 0.5, 0.6 were used for the mode I disk test. Also, diameter of 300mm thickness of 100mm, and notch length ratios a/R of 0.3, 0.4, 0.5, 0.6 were used for the mixed mode disk test. Mixed mode stress intensity factors were investigated by changing notch angles for the disk specimen. Stress intensity factors of a center notched disk were calculated with the various methods for comparison. From the test results, mode I fracture toughness calculated from the disk specimen with diameter of 300 mm, thickness of Inn and notch length ratio a/R of 0.5 was very similar to the RILEM three-point-bend test ones. And it is verified that stress intensity factors for mixed mode can be easily calculated with the disk specimen.

Estimation of Shear Strength Along Concrete Construction Joints Considering the Variation of Concrete Cohesion and Coefficient of Friction (콘크리트 시공줄눈 면에서 점착력 및 마찰계수의 변화를 고려한 전단내력 평가)

  • Yang, Keun-Hyeok;Kwon, Hyuck-Jin;Park, Jong-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.106-112
    • /
    • 2017
  • This paper presents a mathematical model derived from the upper-bound theorem of concrete plasticity to rationally evaluate the shear friction strength of concrete interfaces with a construction joint. The upper limit of the shear friction strength was formulated from the limit state of concrete crushing failure on the strut-and-tie action along the construction joints to avoid overestimating the shear transfer capacity of a transverse reinforcement with a high clamping force. The present model approach proposed that the cohesion and coefficient of friction of concrete can be set to be $0.27(f_{ck})^{0.65}$ and 0.95, respectively, for rough construction joints and $0.11(f_{ck})^{0.65}$ and 0.64, respectively, for smooth ones, where $f_{ck}$ is the compressive strength of concrete. From the comparisons with 155 data compiled from the available literature, the proposed model gave lower values of standard deviation and coefficient of variation of the ratios between predictions and experiments than AASHTO and fib 2010 equations, indicating that the proposed model has consistent trends with test results, unlike the significant underestimation results of such code equations in evaluating the shear friction strength.

Analysis of Fundamental Properties and Durability of Concrete Using Coal Gasification Slag as a Combined Aggregate (석탄가스화 용융슬래그를 혼합잔골재로 사용한 콘크리트의 기초적 특성 및 내구성 분석)

  • Choi, Il-Kyung;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • The aim of the research is to evaluate the possibility of using coal gasification slag (CGS) as a combined aggregate for concrete mixture. To achieve this goal, the fundamental properties and the durability of concrete were analyzed depending on various combining ratio of CGS into both fine aggregate with favorable gradation and relatively coarse particles. According to the results of the experiment, slump and slump flow were increased with content of CGS regardless of crushed fine aggregate with good and poor gradations while the air content was decreased. For the compressive strength of the concrete, in the case of using the crushed aggregate with good gradation, increasing CGS content decreased compressive strength of the concrete, while when the concrete used crushed aggregate with poor gradation, the compressive strength was the maximum at 50% of CGS content. As a durability assessment, drying shrinkage was decreased and carbonation resistance was improved by increasing CGS content. On the other hand, for freeze-thawing resistance, CGS influenced adverse effect on freeze-thawing resistance. Therefore, it is known that an additional air entrainer is needed to increase the freeze-thawing resistance when CGS was used as a combined aggregate for concrete.