• Title/Summary/Keyword: 콘크리트구조설계기준

Search Result 566, Processing Time 0.028 seconds

A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model (연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • Kim, Seong-Soo;Lee, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • In the ACI Code, the empirical equations governing deep beam design are based on low-strength concrete specimens with $f_{ck}$ in the range of 14 to 40MPa. As high-strength concrete(HSC) is becoming more and more popular, it is timely to evaluate the application of HSC deep beam. For the shear strength prediction of HSC deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the proposed model, the Appendix A Strut-and-Tie Model of ACI 318-02, and Eq. of ACI 318-99 11.8 are compared with the experimental test results of 4 deep beams and the collected experimental data of 74 HSC deep beams, compressive strength in the range of 49~78MPa. The proposed SSTM performance consistently reproduced 74 HSC deep beam measured shear strength with reasonable accuracy for a wide range of concrete strength, shear span-depth ratio, and ratio of horizontal and vertical reinforcement.

A Study on the Expansion Joint of Concrete Lining and Duct in a Tunnel (터널 콘크리트 라이닝 및 공동구 신축이음 설치방안에 관한 연구)

  • Son, Moorak;Park, Yangheum;Park, Yunjae;Kim, Jaegyoun;Yoon, Jongcheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.39-50
    • /
    • 2015
  • The installation of the expansion joints in a tunnel concrete lining and duct would minimize the cracking at the location of structural shape and stiffness change, differential settlement, big temperature change, and so on. However, it is difficult to determine the required spacing of the expansion joint in a tunnel concrete lining and duct quantitatively because the spacing is influenced by temperature change, structure construction condition, ground-structure interaction, and etc. Nevertheless, a highway specification (Korea Expressway Corporation, 2012) or a road design manual (Ministry of Land, Transport and Maritime Affairs, 2010) specifies that the expansion joint spacing in a tunnel concrete lining should be installed uniformly smaller than 25 m from the tunnel portals to 50 m inside of a tunnel and elsewhre 20-60 m in a tunnel (because there is no specifcation for a duct it is assumed that a duct follows the specfication of lining). This specification results in several construction and economic problems in relation with a tunnel construction. Accordingly, in order to minimize the problems, this study analyzed both domestic and foreign design standards and specifications. In addition, field test, theoretical and numerical analyses were carried out in relation to the expansion joint in a tunnel lining and duct. The purpose of this study is to reestabilish a criterion for installing the expansion joint in a tunnel concrete lining and duct.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

Experimental study on the Flexural Capacity of U-shape Composite Beam (U-형 복합보의 휨 성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • In this study, a U-shape composite beam was developed to be effectively used for a steel parking lot which is 8m or lower in height. When the U-shape composite beam was applied to a steel parking lot, essential considerations were story-height and long-span. In addition, due to the mixed structural system with reinforced concrete and steel material, the U-shape composite beam needed to have a structural integrity and reliable performance over demand capacity. The main objective of this study was to investigate the performance of the structure consisting of the reinforced concrete (RC) slab and U-shape beam. A U-shape composite beam generally used at a parking lot served as a control specimen. Four specimens were tested under four-point bending. To calculate theoretical values, strain gauges were attached to rebar, steel plate, and concrete surface in the middle of the specimens. As the results, initial yielding strength of the control specimen occurred at the bottom of the U-shaped steel. After yielding, the specimen reached the maximum strength and the RC slab concrete was finally failed by concrete crush due to compressive stress. The structural performance such as flexural strength and ductility of the specimen with the increased beam depth was significantly improved in comparison with the control specimen. Furthermore, the design of the U-shape composite beam with the consideration of flexural strength and ductility was effective since the structural performance by a negative loading was relatively decreased but the ductile behavior was evidently improved.

Stiffness, Rigidity and Vibration Prevention in Precision Machine Foundation Design (장비기초설계의 강성 및 진동저감에 관한 연구)

  • Park Ok-Jeoung;Kim Jin-Ho;Jeon Han-Jun
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.994-1000
    • /
    • 2004
  • 대형시험장비가 설치되는 실험실의 계획에서 장비의 진동은 간과할 수 없는 고려사항이다. 따라서 시험장비를 지지하는 구조물과 기초의 설계시 시험장비의 운행 중 발생하는 공진을 피할 수 있는 구조적 체계의 진동특성에 대한 적절한 평가가 요구된다. 본 논문은 동적특성을 얻기 위해 바닥구조물의 FE 모델링에 관하여 기술하였다. 또한 진동저감을 위한 시험장비기초의 설계를 위해 tuning, 진동기준. 방진시스템을 검토하였다. 시험장비의 진동을 줄이는 최선의 방법은 low tuning 이였으며 이의 구현을 위해 방진스프링과 함께 단단한 콘크리트 블록위에 시험장비를 설치하였다. 총체적인 방진시스템의 구조적 진동특성은 이동성, 힘, 속도 스펙트라를 이용해 표현되었다. 전달과 지점이동 FRF의 비를 시뮬레이션을 통해 비교함으로서 바닥 슬래브의 진동전달 정도가 관찰되었다.

  • PDF

Evaluation and Application of Pullout Strength of Single Anchor in Plain Concrete According to Edge Distance (연단거리에 따른 무근콘크리트 단일앵커의콘파괴 인발 내력에 관한 적용성 평가)

  • Kim, Young-Ho;You, Sung-Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.211-220
    • /
    • 2004
  • This paper presents the evaluation of pullout strengths of expansion anchors and wedge anchors that can cause a failure of the concrete on the basis of the design for anchorage. Tests are conducted for heavy-duty anchors and wedge anchors domestically manufactured and to be installed in plain concrete member. The mainly testing parameters reflected the effects of edge distance. Design of post-installed steel anchors is presented by the Concrete Capacity Design(CCD) in European Organization for Technical Approval. This approach is compared to the well-known provisions, ACI 349-90 specification. The use of both methods to predict the concrete failure load of expansion anchor in uncracked concrete under monotonic loading for important applications is compared. In this study, the concrete tension capacity of fastenings with Heavy-duty Anchors and Wedge Anchors in plain concrete predicted by ACI 349-90 and the Concrete Capacity Design method has been compared with the results of tests.

Experimental Study for the Bending Behavior of Precast Concrete Panel and Composite Deck for Railway Bridge (철도교 바닥판용 프리캐스트 패널과 합성 바닥판의 휨거동에 대한 실험적 연구)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Youn, Seok-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.21-31
    • /
    • 2018
  • This paper presents an experimental investigation on the structural performance of precast ribbed panel specimens and bridge deck specimens fabricated from the panels. The panel specimens are developed for permanent deck forms of railway bridges (PSC girder). The decks of railway bridges have short lengths compared with highway bridges. Therefore, precast panels for railway bridges are different from those of highway bridges. The precast panels have ribs designed for crack control at the bottom of the sections. Two kinds of specimens were examined: one with 400-mm width and one with 1200-mm width. Three specimens of each type were fabricated, and a total of 12 specimens were tested. In this test, the ultimate load, strain of the reinforcement and concrete, crack width, deformation, and slip were measured. The structural performance of the specimens was assessed using the Korea railway bridge design code and Eurocode. All specimens met the current design criteria for structural strength and serviceability.

Analytical Study for Performance Improvement of Studs for Steel Plate Concrete(SC) Walls subjected to Combined Loads (조합하중을 받는 강판 콘크리트(SC) 벽체에서 스터드의 성능개선을 위한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • This study analytically reviewed the behavior of Steel Plate Concrete(SC) walls subjected to combined loads of axial force, flexural moment, and shear force to investigate the effects of shape and arrangement spacing of studs on the behavior of SC walls. To perform it, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were carried out. The results showed that, for SC walls combined steel plate and concrete according to the Design Code, the compressive strength is higher than the tensile strength. Compared results from the finite element analyses of SC walls subjected to combined loads with Design Code showed that all cases were higher than the design strength. For KEPIC SNG, the moment and shear force were not influenced by the axial force of 0.1 to 0.2 times axial strength, however, from the analyses, it was found that the values were decreased as the axial force is increased.

The Study on the Fire Resistance Performance of the CFT (Concrete filled Tube) Column According to the Concrete Compressive Strength and Load Ratio (콘크리트 압축강도 및 하중비에 따른 CFT기둥의 내화성능에 관한 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.44-51
    • /
    • 2010
  • This study, to develop the technology of the fire resistance design of CFT structure based on fire resistance performance design, was suppose to use as basic data for performance design through a measure of temperature and deformation of the CFT specimen as parameter is the concrete compressive strength and load ratio. In accordance with KS F 2257-1 and 7, 24 MPa and 40 MPa and the load ratio of 0.9, 0.6 and 0.2 were imposed on a square column and as a result of evaluating in accordance with the fire resistance criteria, in case of 24 MPa, the fire resistance performance was improved by 73 minutes when the load ratio was reduced by 0.3. And when it comes to 40 MPa, the fire resistance was 31 minutes and 180 minutes when a load ratio was 0.6 and 0.2, respectively. As a result of evaluating fire resistant performance depending on variation of internal concrete strength, it proved that the higher the strength the lower the fire resistance.

Influence of Inadequate Rebar Lap Position on Crack of Underground Box Slab (철근 겹침이음 위치 부적정이 지하박스 슬래브 균열 발생에 미치는 영향)

  • Choi, Jung-Youl;Jang, In-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.685-692
    • /
    • 2020
  • In this study, the experimental and analytical study were performed on the location of longitudinal cracks in the middle of underground box structures. The location where the longitudinal cracking occurred was investigated that the overlapping joint of the rebar and the section of maximum tensile stress generated. Using the finite element analysis, the strength reduction ratio of the rebar was estimated by lack of overlap joint length. As the result of adequacy investigation for the length of the overlap joint presented in the design criteria, it was analytically proved that the lack of the overlap joint length could be cause the decreasing cross-sectional force and concrete cracking. As the result of this study, the adequacy of the overlapping criterion in the current design criteria was confirmed based on the finite element analysis and actual field case. In the case of overlapping joints installed in inappropriate position, it was considered that a long term crack control would be need to ensure the sufficient safety factor for the designed cross-sectional force.