• Title/Summary/Keyword: 코팅층거동

Search Result 112, Processing Time 0.017 seconds

Preparation of pseudo n-type Polyaniline and Evaluation of Electrochemical Properties (가상 n형 폴리아닐린의 제조 및 전기화학적 특성평가)

  • 김래현;최선용;정건용
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.162-173
    • /
    • 2003
  • The pseudo n-type polyaniline was prepared by doping of camphorsulfonic acid(CSA) and dodecylbenzenesulfonic acid(DBSA) as the dopants in solvent of N-methyl-2-pyrrolidinone(NMP). The dopants in polymer structure was qualitatively analyzed using FT-IR. The influence on electrochemical properties with dopant concentration of PANI film were investigated. The electrochemical characteristics of the n-type PANI electrode that coated on ITO were evaluated by cyclic voltammetry(CV) and AC impedance method. The prepared PANI were confirmed as n-type PANI from FT-IR and CV. The charge transfer resistance of film on PANI/CSA electrode were measured as 1.14{\sim}1.09k{\mu}$by AC impedance. The charge transfer resistance of PANI/DBSA electrode decreased with increasing the mole ratio of DBSA as 27.73{\sim}8.37 k{\mu}$. The double layer capacitance of PANI/CSA electrode was showed almost constant value as $13.47{\sim}14.59 {\mu}F$ and that of PANI/DBSA electrode increased with increasing mole ratio of DBSA from 0.49 to $1.20 {\mu}F$.

Hot Corrosion and Thermally Grown Oxide Formation on the Coating of Used IN738LC Gas Turbine Blade (사용된 IN738LC 가스 터빈 블레이드 코팅층의 고온 부식 및 Thermally Grown Oxide 형성 거동)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.200-209
    • /
    • 2022
  • In this study, defects generated in the YSZ coating layer of the IN738LC turbine blade are investigated using an optical microscope and SEM/EDS. The blade YSZ coating layer is composed of a Y-Zr component top coat layer and a Co component bond coat layer. A large amount of Cr/Ni component that diffused from the base is also measured in the bond coat. The blade hot corrosion is concentrated on the surface of the concave part, accompanied by separation of the coating layer due to the concentration of combustion gas collisions here. In the top coating layer of the blade, cracks occur in the vertical and horizontal directions, along with pits in the top coating layer. Combustion gas components such as Na and S are contained inside the pits and cracks, so it is considered that the pits/cracks are caused by the corrosion of the combustion gases. Also, a thermally grown oxide (TGO) layer of several ㎛ thick composed of Al oxide is observed between the top coat and the bond coat, and a similar inner TGO with a thickness of several ㎛ is also observed between the bond coat and the matrix. A PFZ (precipitate free zone) deficient in γ' (Ni3Al) forms as a band around the TGO, in which the Al component is integrated. Although TGO can resist high temperature corrosion of the top coat, it should also be considered that if its shape is irregular and contains pore defects, it may degrade the blade high temperature creep properties. Compositional and microstructural analysis results for high-temperature corrosion and TGO defects in the blade coating layer used at high temperatures are expected to be applied to sound YSZ coating and blade design technology.