• Title/Summary/Keyword: 코오롱기술연구소

Search Result 15, Processing Time 0.021 seconds

RDF Gasification Using a Pilot-Scale Two-Stage Gasification System (파일럿 규모 2단 가스화 시스템 공정을 이용한 RDF 가스화)

  • Park, In-Hee;Park, Young-Kwon;Lee, Young-Man;Bae, Wookeun;Kwak, Yeon-Ho;Cheon, Kyeong-Ho;Park, Sung Hoon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.286-290
    • /
    • 2011
  • Syngas was produced out of pellet refuse derived fuel (RDF) produced from an RDF production facility of W city, Korea. A two-stage gasification system was developed to use the RDF char as an auxiliary heat source for gasification reaction. The composition and heating value of syngas as well as the heating value of residual product (char) were measured at a different residence time to investigate the optimal operating condition of the two-stage gasification system for syngas production. The optimal char residence time to minimize the energy cost due to an external heat source supply was also deduced.

A Study on the Behaviour Analysis and Construction Method of the Self-Supported Earth Retaining Wall (SSR) Using Landslide Stabilizing Piles (2열 H-파일을 이용한 자립식 흙막이 공법(SSR)의 거동분석 및 시공방법에 관한 연구)

  • Sim, Jae-Uk;Park, Keun-Bo;Son, Sung-Gon;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.41-54
    • /
    • 2009
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall (SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below excavation level, tied together at head of soldier piles and landslide stabilizing piles by beams. In order to investigate applicability and safety of this system, a series of experimental model tests were carried out and the obtained results are presented and discussed. Furthermore, the measured data from seven different sites on which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea. It is observed that lateral wall movements obtained from the experimental model is in good agreement with the general trend observed by in site measurements.

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.

Effects of Heat Temperature in Sizing and Pretreatment Processes on the Appearance Colour of the Polyester Fabrics (사이징 및 전처리 공정에서의 열처리 온도 변화에 따른 폴리에스테르 직물의 염색성 변화)

  • Cho, D.H.;Kim, S.J.;Chang, D.H.
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • 이 연구에서는 사이징 공정을 포함해서 수세, 전처리 그리고 최종 열처리 둥의 염색.가공 공정에서의 습열 및 건열 처리 온도가 폴리에스테르 직물의 열응력과 염색성에 미치는 영향을 조사하였다. 사용된 폴리에스테르 필라멘트사는 경사가 50d/24f 스파크사이며 위사는 75d/72f semi-dull사이다. 평직물은 션틀직기, 주자직물은 water jet 직기로 제직하였으며, sizing dryer 온도는 $90^\circ{C}$, $125^\circ{C}$, $150^\circ{C}$, 수세공정의 습열처리 온도는 $90^\circ{C}$, $110^\circ{C}$, $120^\circ{C}$, 전처리 공정의 건열처리 온도는 $180^\circ{C}$, $200^\circ{C}$, $220^\circ{C}$, 마지막 세팅 공정의 건열처리 온도는 $170^\circ{C}$, $180^\circ{C}$, $200^\circ{C}$로 변화시켰다. 이들 습열과 건열처리 온도 변화에 따른 직물내의 필라멘트사의 열 수축률과 직물의 겉보기 염색성의 변화를 조사 분석하였다.

  • PDF

A Study on the Dynamic Lateral Displacements of Caisson Quay Walls in Moderate Earthquake Regions (중진지역에서 케이슨 안벽의 동적수평변위 특성에 관한 연구)

  • Park, Keun-Bo;Sim, Jae-Uk;Cha, Seung-Hun;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.137-148
    • /
    • 2008
  • In this study, 28 earthquake records with magnitudes from 5.3 to 7.9 are selected for dynamic analysis in order to assess applicability of the earthquakes for domestic seismic design. The assessment is performed using the seismic spectrum analysis of energy and acceleration. Based on results of the analysis, four acceleration time histories, which satisfy the Korean design standard response spectrum, are proposed. From the dynamic analysis using earthquake magnitudes from 6.4 to 7.9, it is found that horizontal displacements corresponding to earthquake magnitudes greater than 7 are two times larger than those with magnitude 6.5. Therefore, it can be stated that use of strong earthquakes, such as Miyagiken-ken-oki earthquake (Ofunato, $M_{JMA}=7.4$) and Tokachi-oki earthquake (Hachinohe, $M_{JMA}=7.9$), for the seismic design in Korea is not applicable, and may prove to be excessively conservative due to overestimated seismic force. From the dynamic analyses using the proposed acceleration time histories, effects of caisson quay wall dimension and the subsoil condition are investigated as well. The simplified design charts to evaluate horizontal displacements of caisson quay wall are also proposed based on earthquake magnitude 6.5 that is appropriate in Korea.