• Title/Summary/Keyword: 코발트 염화물 용액

Search Result 4, Processing Time 0.016 seconds

Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral (가역 감온 변색 겔형 염화 코발트/polyvinyl butyral을 이용한 온도 감지 광섬유 센서 연구)

  • Hwang, KiSeob;Park, JeaHee;Ha, KiRyong;Lee, JunYoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at $25^{\circ}C$ to 7.1% and 48 nW at $70^{\circ}C$, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

Effect of Nozzle Tip Size on the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 코발트 산화물 나노 분체 제조에 미치는 노즐 팁 크기의 영향)

  • Kim, Dong Hee;Yu, Jae Keun
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.41-49
    • /
    • 2016
  • The present study was intended to prepare cobalt oxide ($Co_3O_4$) powder of average particle size 50 nm or less by spray pyrolysis reaction using the raw cobalt chloride ($CoCl_2$) solution, in order to identify the change in the nature of the particles according to the change in the nozzle tip size. When the nozzle tip was 1 mm, it turned out that most of the droplets were spherical and the surface showed very tight structure. The average particle size of the finally formed particles was 20-30 nm. When the nozzle tip size was 2 mm, some of the droplets formed were spherical, but a considerable part of them showed severely disrupted form. particles formed showed an average particle size of 30 - 40 nm. For the nozzle tip size of 5 mm, spherical droplets were almost non-existent and most were in badly fragmented state. The tightness of surface structure of the droplets has greatly been reduced compared with other nozzle tip sizes. Average size of the formed particles was about 25 nm. As the nozzle tip size increased from 1 mm to 2 mm and 3 mm, the intensities of the XRD peaks have changed little, but significantly been reduced when the nozzle tip size increased to 5mm. As the nozzle tip size increased from 1 mm to 2 mm, the specific surface area of the particles decreased, but the nozzle tip size increased to 5mm, the specific surface area remarkably increased.

Effect of Ambient Air Pressure on the Preparation of Cobalt Oxide Powder with Average Particle Size below 50 nm by Spray Pyrolysis Process (분무열분해 공정에 의한 평균입도 50 nm 이하의 코발트 산화물 분체 제조에 미치는 공기압력의 영향)

  • Kim, Dong Hee;Yu, Jae Keun
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2017
  • When the ambient air pressure was $0.1kg/cm^2$, there were few spherically formed droplets, which showed very badly fragmented state. The average particle size of the particles constituting the droplet was about 40 nm. When the air pressure increased to $0.5kg/cm^2$, the ratio of the spherical droplet forms increased, but still showed a state of severe disruption. The average particle size of the particles was reduced to about 35 nm. As the air pressure increased to $3kg/cm^2$, the ratio of spherical droplet form significantly increased, the degree of fragmentation even further decreased and the average particle size decreased to 30 nm. When the air pressure increased from 0.1 to $1kg/cm^2$, the XRD peak intensity showed little change, but the specific surface area was decreased. As the air pressure increased to $3kg/cm^2$, the intensity of XRD peaks showed a little decrease, while the specific surface area increased.

Differentiation of Sorptive Bindings of Some Radionuclides with Sequential Chemical Extractions in Sandstones (순차적화학추출법을 사용한 방사성핵종의 사암에 대한 수착유형 평가)

  • Park, Chung-Kyun;Hahn, Pil-Soo;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.461-470
    • /
    • 1994
  • Sorption experiments of $^{60}$ Co, $^{85}$ Sr. and $^{137}$ Cs onto sandstone particles in a batch were carried out to investigate the migration mobility. Sorption kinetics and reversibility as well as sorption mechanisms were examined. Sorption reaction occurred mostly within 10 hours on the outer surface of the sandstone particle but diffusion into the inner surface of the mineral has still occurred after that time. In order to distinguish sorption types of radionuclides, a sequential chemical extraction was introduced. The sorbed radionuclides were then extracted by applying different solutions of synthetic groundwater, CaCl$_2$, KCl and KOX-HA Especially KCl is adopted to extract the ion-exchanged cesium. Sorption types considered are reversible sorption under groundwater condition, ion exchange, association with ferro-manganese oxides or oxyhydroxides, and irreversible fixation. Strontium sorbs onto the sandstone surface mainly by fast and reversible ion exchange reaction. However, cobalt and cesium do not sorb by simple process. The main sorptive binding of cobalt was the association with ferro-manganese oxides and the secondary one was irreversible fixation. Diffusion into the lattice of minerals controlled the sorption rate of cobalt The main sorptin type of cesium was irreversible fixation, while ion exchange reaction was the secondary importance. Hence the oreder of migration mobility for the three radionuclides was Sr$^{2+}$ > Co$^{2+}$ > Cs$^{+}$ in the sandstones.

  • PDF