• 제목/요약/키워드: 코리오리스힘

검색결과 2건 처리시간 0.017초

회전하는 정사각단면 $90^{\circ}$곡관내 난류유동에 관한 수치해석적 연구 (Study on the Analysis of Turbulent Flow in a Rotating Square Sectioned $90^{\circ}$ Curved Duct)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2206-2222
    • /
    • 1995
  • In this study, the characteristics of the three-dimensional turbulence flow in a rotating square sectioned 90.deg. bend were investigated by numerical simulation. And a dimensionless number, Coriolis force ratio, primarily subjected to the feature of the flow in the rotating 90.deg. bend was obtained as a result of one-dimensional theory. In the simulation study, low Reynolds number ASM developed by Kim(1991) in the square sectioned 180.deg. bend flow was modified in order to consider the rotational effects in the testing flows. In the near wall region of low Reynolds number, four turbulence models were employed and compared in order to find the most appropriate model for the analysis of the rotating 90.deg. bend flow. By comparison of the results with the experimental data, it is shown that low Reynolds number Algebraic Stress Model with rotating terms reflects most correctly the rotational effects. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotation affect directly both the mean motion and the turbulent fluctuations. Their actions on the mean flow are to induce a secondary motion while their effects on turbulence are to modify the pressure strain.

회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구 (Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.